8 research outputs found

    Atmospheric pressure plasma deposition of organosilicon thin films by direct current and radio-frequency plasma jets

    Get PDF
    Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.This research was funded by EU H2020 M.Era-Net “PlasmaTex” project. Funding of the Romanian team was insured by the Romanian Ministry of Research and Innovation under the contract 31/2016/UEFISCDI. This work was funded by the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC) and co-financed by European funds (FEDER) through the PT2020 program, research project M-ERA-NET/0006/2014. Slovenian team research was funded through the Ministry of Education, Science and Sport and Slovenian Research Agency (ARRS)

    Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health

    No full text
    A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented

    Laser-induced forward transfer of carbon nanowalls for soft electrodes fabrication

    No full text
    Symposium CC on Laser and Plasma Processing for Advanced Applications in Material Science held during the Annual Spring Meeting of the European-Materials-Research-Society (E-MRS), Lille, FRANCE, MAY 11-15, 2015International audienceCarbon nanowalls (CNW) are two-dimensional interconnected graphitic nanostructures that have a few mu m in length and height, reaching typical thicknesses of a few tens of nm. We present results on such layers synthesized in a low pressure argon plasma jet, injected with acetylene and hydrogen, on transparent substrates (quartz) heated at 600 degrees C, without catalyst. Thermogravimetric analysis reveals that the CNW are stable up to 420 degrees C in air, and Raman spectroscopy investigations highlight their graphene-like structure. Finally, using a pulsed Nd:YAG laser device (355 nm, 50 ps), we show that 2D-arrays of CNW (pixels and lines) can be printed by laser-induced forward transfer (LIFT), preserving their architecture and structure. Electrical measurements on 1 mu m thick CNW demonstrate typical values in the range of 357.5-358.4 Omega for the samples grown on Au/Cr electrodes, and in the range of 450.1-474.7 Omega for the LIFT printed lines (under positive, negative, and neutral polarization; 1 kHz-5 MHz frequency range; 500 mV and 1 V, respectively). Their morphology is highlighted by means of optical and electronic microscopy. Such structures have potential applications as soft conductive lines, in sensor development and/or embedding purposes. (C) 2015 Elsevier B.V. All rights reserved

    Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils

    No full text
    This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet–visible spectroscopy (UV–VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL−1 and 500 μg mL−1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing

    Novel Ecogenic Plasmonic Biohybrids as Multifunctional Bioactive Coatings

    No full text
    The objective of the present study is the valorization of natural resources and the recycling of vegetal wastes by converting them into novel plasmonic bio-active hybrids. Thus, a “green” approach was used to design pectin-coated bio-nanosilver. Silver nanoparticles were generated from two common garden herbs (Mentha piperita and Amaranthus retroflexus), and pectin was extracted from lemon peels. The samples were characterized by the following methods: Ultraviolet–visible (UV-Vis) absorption spectroscopy, Fourier Transform Infrared (FT-IR), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), dynamic light scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM)–Energy-dispersive X-ray Spectroscopy (EDX), and zeta potential measurements. Microscopic investigations revealed the spherical shape and the nano-scale size of the prepared biohybrids. Their bioperformances were checked in terms of antioxidant and antibacterial activity. The developed plasmonic materials exhibited a strong ability to scavenge short-life (96.1% ÷ 98.7%) and long-life (39.1% ÷ 91%) free radicals. Microbiological analyses demonstrated an impressive antibacterial effectiveness of pectin-based hybrids against Escherichia coli. The results are promising, and the obtained biomaterials could be used in many bio-applications, especially as antioxidant and antimicrobial biocoatings

    Characterization and Antitumoral Activity of Biohybrids Based on Turmeric and Silver/Silver Chloride Nanoparticles

    No full text
    The phyto-development of nanomaterials is one of the main challenges for scientists today, as it offers unusual properties and multifunctionality. The originality of our paper lies in the study of new materials based on biomimicking lipid bilayers loaded with chlorophyll, chitosan, and turmeric-generated nano-silver/silver chloride particles. These materials showed a good free radical scavenging capacity between 76.25 and 93.26% (in vitro tested through chemiluminescence method) and a good antimicrobial activity against Enterococcus faecalis bacterium (IZ > 10 mm). The anticancer activity of our developed bio-based materials was investigated against two cancer cell lines (human colorectal adenocarcinoma cells HT-29, and human liver carcinoma cells HepG2) and compared to one healthy cell line (human fibroblast BJ cell line). Cell viability was evaluated for all prepared materials after a 24 h treatment and was used to select the biohybrid with the highest therapeutic index (TI); additionally, the hemolytic activity of the samples was also evaluated. Finally, we investigated the morphological changes induced by the developed materials against the cell lines studied. Biophysical studies on these materials were done by correlating UV–Vis and FTIR absorption spectroscopy, with XRD, SANS, and SAXS methods, and with information provided by microscopic techniques (AFM, SEM/EDS). In conclusion, these “green” developed hybrid systems are an important alternative in cancer treatment, and against health problems associated with drug-resistant infections

    Kaolinite Thin Films Grown by Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation

    No full text
    In this work, thin films of lamellar clays were deposited by laser techniques (matrix assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD)). The focus of this paper is the optimization of deposition parameters for the production of highly oriented crystalline films. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Contact angle measurements were employed to identify the wetting properties of the deposited thin films. Hydrophobic to superhydrophilic films can be prepared by using different deposition techniques and deposition parameters. MAPLE led to superhydrophilic films with contact angles in the range 4°–8°, depending on the microstructure and surface roughness at micro and nano scale. The 1064 nm PLD had a high deposition rate and produced a textured film while at λ = 193 nm an extremely thin and amorphous layer was depicted. Oriented kaolinite films were obtained by MAPLE even at 5 wt.% kaolinite in the target
    corecore