15 research outputs found
Measuring the CMB primordial B-modes with Bolometric Interferometry
The Q&U Bolometric Interferometer for Cosmology (QLâBIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B-modes. A unique feature is the so-called âspectral imagingâ, i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of âv/v ~ 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QU BIC experiment and future prospects
Transdisciplinary contributions in undergraduate university students through a stratospheric balloon project with an astrobiological focus
In a rapidly changing academic-scientific context, it is essential to adapt new learning strategies that foster the acquisition of new knowledge and the development of skills in future professionals, such as interacting synergistically with disciplines outside their own to execute projects successfully and comprehensively. The adaptation is only possible thanks to the inter and transdisciplinarity that Astrobiology has promoted since its inception. We use the term transdisciplinary for education that integrates different disciplines in a way to build new knowledge and increase the studentâs knowledge and skills. For this reason, this study aimed to demonstrate that an astrobiological stratospheric balloon launch project cultivates transdisciplinary awareness in participants: undergraduate university students in Lima, Peru. The sample consisted of 15 students from the following disciplines: biology, genetics, chemical engineering, physics, industrial engineering, agri-food engineering, forestry engineering, electronics engineering, mechatronics engineering, geology, geological engineering, philosophy, social communication, audiovisual communication and education. Using a semi-structured in-depth interview technique, experts validated the questions from the Universidad Nacional Mayor de San Marcos, Peru, and a matrix of meaning was constructed to classify the responses, ultimately obtaining the categories: contribution, complementarity and quantity. The participantsâ responses were processed and analyzed with Chat-GPT 3.5, revealing unanimous agreement that each participantâs discipline contributed to the success of the balloon launch. To complement the qualitative interpretation of the results, a quantitative measurement was conducted to minimize subjective biases. Additionally, they gained knowledge and insights into other unfamiliar study subjects, collaborated to improve process quality, shared and harmonized their ideas to implement comprehensive solutions, and affirmed that their university education is often isolated or strictly focused on their specialization. In conclusion, experiences where different areas of knowledge converge in praxis, have the potential to awaken new technical, cognitive and communication skills in the individuals involved, utilizing astrobiological resources to invigorate and strengthen collective learning. © The Author(s), 2024
QUBIC â The Q & U Bolometric Interferometer for Cosmology
International audienceThis In this paper we briefly describe QUBIC, the Q & U Bolometric Interferometer for Cosmology, a novel ground-based instrument designed to measure the extremely faint polarization anisotropy of the cosmic microwave background at intermediate angular scales. In particular we will describe simulations of the optical combiner and feedhorn array used to generate synthesized beam patterns for each detector on our focal plane. A QUBIC technical demonstrator has been built and is being installed in the observing site at Alto Chorrillos, Argentina with first light expected in 2022
Status of QUBIC, the Q&U Bolometer for Cosmology
International audienceThe Q&U Bolometric Interferometer for Cosmology (QUBIC) is a novel kind of polarimeter optimized for the measurement of the B-mode polarization of the Cosmic Microwave Back-ground (CMB), which is one of the major challenges of observational cosmology. The signal is expected to be of the order of a few tens of nK, prone to instrumental systematic effects and polluted by various astrophysical foregrounds which can only be controlled through multichroic observations. QUBIC is designed to address these observational issues with a novel approach that combines the advantages of interferometry in terms of control of instrumental systematics with those of bolometric detectors in terms of wide-band, background-limited sensitivity
Status of QUBIC, the Q&U Bolometer for Cosmology
International audienceThe Q&U Bolometric Interferometer for Cosmology (QUBIC) is a novel kind of polarimeter optimized for the measurement of the B-mode polarization of the Cosmic Microwave Back-ground (CMB), which is one of the major challenges of observational cosmology. The signal is expected to be of the order of a few tens of nK, prone to instrumental systematic effects and polluted by various astrophysical foregrounds which can only be controlled through multichroic observations. QUBIC is designed to address these observational issues with a novel approach that combines the advantages of interferometry in terms of control of instrumental systematics with those of bolometric detectors in terms of wide-band, background-limited sensitivity
Status of QUBIC, the Q&U Bolometer for Cosmology
International audienceThe Q&U Bolometric Interferometer for Cosmology (QUBIC) is a novel kind of polarimeter optimized for the measurement of the B-mode polarization of the Cosmic Microwave Back-ground (CMB), which is one of the major challenges of observational cosmology. The signal is expected to be of the order of a few tens of nK, prone to instrumental systematic effects and polluted by various astrophysical foregrounds which can only be controlled through multichroic observations. QUBIC is designed to address these observational issues with a novel approach that combines the advantages of interferometry in terms of control of instrumental systematics with those of bolometric detectors in terms of wide-band, background-limited sensitivity
Measuring the CMB primordial B-modes with Bolometric Interferometry
The Q&U Bolometric Interferometer for Cosmology (QLâBIC) is the first bolometric interferometer designed to measure the primordial B-mode polarization of the Cosmic Microwave Background (CMB). Bolometric interferometry is a novel technique that combines the sensitivity of bolometric detectors with the control of systematic effects that is typical of interferometry, both key features in the quest for the faint signal of the primordial B-modes. A unique feature is the so-called âspectral imagingâ, i.e., the ability to recover the sky signal in several sub-bands within the physical band during data analysis. This feature provides an in-band spectral resolution of âv/v ~ 0.04 that is unattainable by a traditional imager. This is a key tool for controlling the Galactic foregrounds contamination. In this paper, we describe the principles of bolometric interferometry, the current status of the QU BIC experiment and future prospects