7,371 research outputs found
Optimum Drift Velocity for Single Molecule Fluorescence Bursts in Micro/Nano-Fluidic Channels
Photonic burst histograms can be used to identify single protein molecules in
micro/nano-fluidic channels provided the width of the histogram is narrow.
Photonic shot noise and residence time fluctuations, caused by longitudinal
diffusion, are the major sources of the histogram width. This Communication is
a sequel to an earlier Letter of ours [L. L. Kish et al., Appl. Phys. Lett. 99,
143121 (2011)] and demonstrates that, for a given diffusion coefficient, an
increase of the drift velocity enhances the relative shot noise and decreases
the relative residence time fluctuations. This leads to an optimum drift
velocity which minimizes the histogram width and maximizes the ability to
identify single molecules, which is an important result for applications.Comment: 4 page
A proof of uniqueness of the Gurarii space
We present a short and elementary proof of isometric uniqueness of the
Gurarii space.Comment: 6 pages, some improvements incorporate
Parton distribution functions from nonlocal light-cone operators with definite twist
We introduce the chiral-even and chiral-odd quark distributions as forward
matrix elements of related bilocal quark operators with well-defined
(geometric) twist. Thereby, we achieve a Lorentz invariant classification of
these distributions which differ from the conventional ones by explicitly
taking into account the necessary trace terms. The relations between both kinds
of distribution functions are given and the mismatch between their different
definition of twist is discussed. Wandzura-Wilczek--like relations between the
conventional distributions (based on dynamical twist) are derived by means of
geometric twist distribution functions.Comment: 17 pages, REVTEX, Extended version, The Introduction has been
rewritten, Setion V "Wandzura-Wilczek--like relations" and App. B are added;
Sign errors are correcte
Recommended from our members
Matrix modification for enhancing the transport properties of the human cartilage endplate to improve disc nutrition.
Poor solute transport through the cartilage endplate (CEP) impairs disc nutrition and could be a key factor that limits the success of intradiscal biologic therapies. Here we demonstrate that treating the CEP with matrix metalloproteinase-8 (MMP-8) reduces the matrix constituents that impede solute uptake and thereby improves nutrient diffusion. Human CEP tissues harvested from four fresh cadaveric lumbar spines (age range: 38-66 years old) were treated with MMP-8. Treatment caused a dose-dependent reduction in sGAG, localized reductions to the amount of collagen, and alterations to collagen structure. These matrix modifications corresponded with 16-24% increases in the uptake of a small solute (376 Da). Interestingly, the effects of MMP-8 treatment depended on the extent of non-enzymatic glycation: treated CEPs with high concentrations of advanced glycation end products (AGEs) exhibited the lowest uptake compared to treated CEPs with low concentrations of AGEs. Moreover, AGE concentrations were donor-specific, and the donor tissues with the highest AGE concentrations appeared to have lower uptake than would be expected based on the initial amounts of collagen and sGAG. Finally, increasing solute uptake in the CEP improved cell viability inside diffusion chambers, which supports the nutritional relevance of enhancing the transport properties of the CEP. Taken together, our results provide new insights and in vitro proof-of-concept for a treatment approach that could improve disc nutrition for biologic therapy: specifically, matrix reduction by MMP-8 can enhance solute uptake and nutrient diffusion through the CEP, and AGE concentration appears to be an important, patient-specific factor that influences the efficacy of this approach
Computational Efficiency of Frequency-- and Time--Domain Calculations of Extreme Mass--Ratio Binaries: Equatorial Orbits
Gravitational waveforms and fluxes from extreme mass--ratio inspirals can be
computed using time--domain methods with accuracy that is fast approaching that
of frequency--domain methods. We study in detail the computational efficiency
of these methods for equatorial orbits of fast spinning Kerr black holes, and
find the number of modes needed in either method --as functions of the orbital
parameters-- in order to achieve a desired accuracy level. We then estimate the
total computation time and argue that for high eccentricity orbits the
time--domain approach is more efficient computationally. We suggest that in
practice low-- modes are computed using the frequency--domain approach, and
high-- modes are computed using the time--domain approach, where is the
azimuthal mode number.Comment: 19 figures, 6 table
Order parameter oscillations in Fe/Ag/Bi2Sr2CaCu2O{8+delta} tunnel junctions
We have performed temperature dependent tunneling conductance spectroscopy on
Fe/Ag/Bi2Sr2CaCu2O8 (BSCCO) planar junctions. The multilayered Fe
counterelectrode was designed to probe the proximity region of the ab-plane of
BSCCO. The spectra manifested a coherent oscillatory behavior with magnitude
and sign dependent on the energy, decaying with increasing distance from the
junction barrier, in conjunction with the theoretical predictions involving
d-wave superconductors coupled with ferromagnets. The conductance oscillates in
antiphase at E = 0 and E = +/-Delta. Spectral features characteristic to a
broken time-reversal pairing symmetry are detected and they do not depend on
the geometrical characteristics of the ferromagnetic film.Comment: 4 pages and 4 figures Submitted to Physical Review Letter
Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures
The theoretical description of the thermodynamic properties of
ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale
is proposed. Their superconducting characteristics strongly depend on the
mutual orientation of the ferromagnetic layers. In addition, depending on the
transparency of S/F interfaces, the superconducting critical temperature can
exhibit four different types of dependences on the thickness of the F-layer.
The obtained results permit to give some practical recommendations for the
spin-valve effect experimental observation. In this spin-valve sandwich, we
also expect a spontaneous transition from parallel to anti-parallel
ferromagnetic moment orientation, due to the gain in the superconducting
condensation energy.Comment: 20 pages, 5 figures, submitted to PR
- …