155 research outputs found

    Gape size influences seasonal patterns of piscivore diets in three Neotropical rivers

    Get PDF
    We examined diets of four piscivores, two in the order Perciformes (Cichla temensis and C. orinocensis) and two in the order Characiformes (Boulengerella cuvieri and B. lucius), from the Cinaruco, La Guardia, and Ventuari rivers in Venezuela throughout the wet-dry seasonal cycle. The four piscivores consumed a phylogenetically and morphologically diverse group of fishes, reflecting the overall diversity of fish species in these rivers. At the start of the falling-water period, Cichla consumed large prey, especially the abundant, migratory, fish of the genus Semaprochilodus. As these relatively large prey became depleted during the dry season, Cichla tended to consume smaller prey. For Boulengerella, gape limitation precluded consumption of larger, seasonally abundant, fishes, and so prey sizes were more consistent throughout the seasonal cycle. Our findings show how prey abundance and gape limitations interact to influence seasonal patterns of predator-prey interactions

    Size-based variation in intertissue comparisons of stable carbon and nitrogen isotopic signatures of bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier)

    Get PDF
    Stable isotopes are important tools for understanding the trophic roles of elasmobranchs. However, whether different tissues provide consistent stable isotope values within an individual are largely unknown. To address this, the relationships among carbon and nitrogen isotope values were quantified for blood, muscle, and fin from juvenile bull sharks (Carcharhinus leucas) and blood and fin from large tiger sharks (Galeocerdo cuvier) collected in two different ecosystems. We also investigated the relationship between shark size and the magnitude of differences in isotopic values between tissues. Isotope values were significantly positively correlated for all paired tissue comparisons, but R2 values were much higher for δ13C than for δ15N. Paired differences between isotopic values of tissues were relatively small but varied significantly with shark total length, suggesting that shark size can be an important factor influencing the magnitude of differences in isotope values of different tissues. For studies of juvenile sharks, care should be taken in using slow turnover tissues like muscle and fin, because they may retain a maternal signature for an extended time. Although correlations were relatively strong, results suggest that correction factors should be generated for the desired study species and may only allow coarse-scale comparisons between studies using different tissue types

    Contrasting patterns of individual specialization and trophic coupling in two marine apex predators

    Get PDF
    1. Apex predators are often assumed to be dietary generalists and, by feeding on prey from multiple basal nutrient sources, serve to couple discrete food webs. But there is increasing evidence that individual level dietary specialization may be common in many species, and this has not been investigated for many marine apex predators. 2. Because of their position at or near the top of many marine food webs, and the possibility that they can affect populations of their prey and induce trophic cascades, it is important to understand patterns of dietary specialization in shark populations. 3. Stable isotope values from body tissues with different turnover rates were used to quantify patterns of individual specialization in two species of ‘generalist’ sharks (bull sharks, Carcharhinus leucas, and tiger sharks, Galeocerdo cuvier). 4. Despite wide population-level isotopic niche breadths in both species, isotopic values of individual tiger sharks varied across tissues with different turnover rates. The population niche breadth was explained mostly by variation within individuals suggesting tiger sharks are true generalists. In contrast, isotope values of individual bull sharks were stable through time and their wide population level niche breadth was explained by variation among specialist individuals. 5. Relative resource abundance and spatial variation in food-predation risk tradeoffs may explain the differences in patterns of specialization between shark species. 6. The differences in individual dietary specialization between tiger sharks and bull sharks results in different functional roles in coupling or compartmentalizing distinct food webs. 7. Individual specialization may be an important feature of trophic dynamics of highly mobile marine top predators and should be explicitly considered in studies of marine food webs and the ecological role of top predators

    Comparison of fish assemblages in two littoral habitats in a Neotropical morichal stream in Venezuela

    Get PDF
    Morichales are lowland streams in South American savannas with riparian forest dominated by the moriche palm (Mauritia flexuosa). We sampled littoral habitats from ten flooded vegetated patches (dominated by Mauritiella aculeate) and six sand banks in two months of the dry season (Feb-Mar 2005) in a stream in the savannas of Apure State, Venezuela. We collected samples that compromised 12,407 individual fishes of 107 species. Small-bodied fishes (\u3c 100 mm), representing diverse trophic and life history strategies, were abundant. The most abundant species were in the families Characidae and Cichlidae. Fish assemblages from flooded vegetated patches differed significantly from those on adjacent sand banks. High structural complexity along vegetated shoreline habitats of morichal streams likely contributes to species richness and affects assemblage composition

    Provision of ecosystem services by human-made structures in a highly impacted estuary

    Get PDF
    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h−1, or ~30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures

    Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems

    Get PDF
    Small-scale experiments and theory suggest that ecological functions provided by communities become more stable with increased species richness. Whether these patterns manifest at regional spatial scales and within species-rich communities (e.g., coral reefs) is largely unknown. We quantified five biogeochemical processes, and an aggregate measure of multifunctionality, in species-rich coastal fish communities to test three questions: (1) Do previously predicted biodiversity-ecosystem-function relationships hold across large spatial scales and in highly diverse communities? (2) Can additional covariates of community structure improve these relationships? (3) What is the role of community biomass and functional group diversity in maintaining biogeochemical processes under various scenarios of species loss across ecosystem types? These questions were tested across a large regional gradient of coral reef, mangrove and seagrass ecosystems. Statistical models demonstrated that species richness and the mean maximum body size per species strongly predicted biogeochemical processes in all ecosystem types, but functional group diversity was only a weak predictor. Simulating three scenarios of species loss demonstrated that conserving community biomass alone increased the ability for communities to maintain ecosystem processes. Multifunctionality of biogeochemical processes was maintained least in simulations that conserved biomass and community structure, underscoring the relative lack of importance of community structure in maintaining multiple simultaneous ecosystem functions in this system. Findings suggest that conserving community biomass alone may be sufficient to sustain certain biogeochemical processes, but when considering conservation of multiple simultaneous biogeochemical processes, management efforts should focus first on species richness

    Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish

    Get PDF
    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24–47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77–100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change

    Individual Behavior Drives Ecosystem Function and the Impacts of Harvest

    Get PDF
    Current approaches for biodiversity conservation and management focus on sustaining high levels of diversity among species to maintain ecosystem function. We show that the diversity among individuals within a single population drives function at the ecosystem scale. Specifically, nutrient supply from individual fish differs from the population average \u3e80% of the time, and accounting for this individual variation nearly doubles estimates of nutrients supplied to the ecosystem. We test how management (i.e., selective harvest regimes) can alter ecosystem function and find that strategies targeting more active individuals reduce nutrient supply to the ecosystem up to 69%, a greater effect than body size–selective or nonselective harvest. Findings show that movement behavior at the scale of the individual can have crucial repercussions for the functioning of an entire ecosystem, proving an important challenge to the species-centric definition of biodiversity if the conservation and management of ecosystem function is a primary goal

    Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem

    Get PDF
    On coral reefs, fishes can facilitate coral growth via nutrient excretion; however, as coral abundance declines, these nutrients may help facilitate increases in macroalgae. By combining surveys of reef communities with bioenergetics modeling, we showed that fish excretion supplied 25 times more nitrogen to forereefs in the Florida Keys, USA, than all other biotic and abiotic sources combined. One apparent result was a positive relationship between fish excretion and macroalgal cover on these reefs. Herbivore biomass also showed a negative relationship with macroalgal cover, suggesting strong interactions of top-down and bottom-up forcing. Nutrient supply by fishes also showed a negative correlation with juvenile coral density, likely mediated by competition between macroalgae and corals, suggesting that fish excretion may hinder coral recovery following large-scale coral loss. Thus, the impact of nutrient supply by fishes may be context-dependent and reinforce either coral-dominant or coral-depauperate reef communities depending on initial community states
    corecore