2,734 research outputs found

    A Striking Confluence Between Theory and Observations of High-Mass X-ray Binary Pulsars

    Full text link
    We analyse the most powerful X-ray outbursts from neutron stars in ten Magellanic high-mass X-ray binaries and three pulsating ultraluminous X-ray sources. Most of the outbursts rise to LmaxL_{max} which is about the level of the Eddington luminosity, while the rest and more powerful outbursts also appear to recognize that limit when their emissions are assumed to be anisotropic and beamed toward our direction. We use the measurements of pulsar spin periods PSP_S and their derivatives PSË™\dot{P_S} to calculate the X-ray luminosities LpL_p in their faintest accreting ("propeller") states. In four cases with unknown PSË™\dot{P_S}, we use the lowest observed X-ray luminosities, which only adds to the heterogeneity of the sample. Then we calculate the ratios Lp/LmaxL_p/L_{max} and we obtain an outstanding confluence of theory and observations from which we conclude that work done on both fronts is accurate and the results are trustworthy: sources known to reside on the lowest Magellanic propeller line are all located on/near that line, whereas other sources jump higher and reach higher-lying propeller lines. These jumps can be interpreted in only one way, higher-lying pulsars have stronger surface magnetic fields in agreement with empirical results in which PSË™\dot{P_S} and LpL_p values were not used.Comment: Added LMC X-4 and commented on the cyclotron absorption line of SMC X-2. 4 pages, 1 figure, 2 tables, submitted to MNRAS

    10 Years of Object-Oriented Analysis on H1

    Full text link
    Over a decade ago, the H1 Collaboration decided to embrace the object-oriented paradigm and completely redesign its data analysis model and data storage format. The event data model, based on the RooT framework, consists of three layers - tracks and calorimeter clusters, identified particles and finally event summary data - with a singleton class providing unified access. This original solution was then augmented with a fourth layer containing user-defined objects. This contribution will summarise the history of the solutions used, from modifications to the original design, to the evolution of the high-level end-user analysis object framework which is used by H1 today. Several important issues are addressed - the portability of expert knowledge to increase the efficiency of data analysis, the flexibility of the framework to incorporate new analyses, the performance and ease of use, and lessons learned for future projects.Comment: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Researc

    The Great Pretenders Among the ULX Class

    Get PDF
    The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that appear to emit X-ray radiation at isotropic luminosities LX=7×1039L_X = 7\times 10^{39}~erg~s−1−1×1041^{-1}-1\times 10^{41}~erg~s−1^{-1} only because their emissions are strongly beamed toward our direction and our sight lines are offset by only a few degrees from their magnetic-dipole axes. The three known pretenders appear to be stronger emitters than the presumed black holes of the ULX class, such as Holmberg II \& IX X-1, IC10 X-1, and NGC300 X-1. For these three NSs, we have adopted a single reasonable assumption, that their brightest observed outbursts unfold at the Eddington rate, and we have calculated both their propeller states and their surface magnetic-field magnitudes. We find that the results are not at all different from those recently obtained for the Magellanic Be/X-ray pulsars: the three NSs reveal modest magnetic fields of about 0.3-0.4~TG and beamed propeller-line X-ray luminosities of ∼1036−37\sim 10^{36-37}~erg~s−1^{-1}, substantially below the Eddington limit.Comment: To appear in Research in Astronomy and Astrophysic

    Generally Applicable Law and the Free Exercise of Religion

    Get PDF
    I. Introduction II. Free Exercise of Religion in the Age of Smith III. Two Requirements with Distinct Content ... A. Neutrality ... B. General Applicability IV. Elaborating General Applicability ... A. Arguments for Minimizing the Requirement of General Applicability: Stormans v. Wiesman ... B. Reasonable Exceptions ... C. Circular Categories and Circular Government Interests ... D. Secular Exceptions Not Stated in the Law’s Text ... E. Rules That Apply to Most but Not All Analogous Secular Conduct ... F. Laws with a Single Secular Exception That Undermines the State’s Interests V. Underlying Reasons ... A. Value Judgments about Religion ... B. Vicarious Political Protection for Religious Minorities ... C. The Level of Protection VI. Conclusio

    Creation of collective many-body states and single photons from two-dimensional Rydberg lattice gases

    Full text link
    The creation of collective many-body quantum states from a two-dimensional lattice gas of atoms is studied. Our approach relies on the van-der-Waals interaction that is present between alkali metal atoms when laser excited to high-lying Rydberg s-states. We focus on a regime in which the laser driving is strong compared to the interaction between Rydberg atoms. Here energetically low-lying many-particle states can be calculated approximately from a quadratic Hamiltonian. The potential usefulness of these states as a resource for the creation of deterministic single-photon sources is illustrated. The properties of these photon states are determined from the interplay between the particular geometry of the lattice and the interatomic spacing.Comment: 12 pages, 8 figure

    High-sensitivity tracing of stable isotope labeled Ag nanoparticles in environmental samples using MC-ICP-MS

    Get PDF
    Silver nanoparticles (Ag NPs) are among the most widely used engineered nanomaterials and this warrants further investigation of their behaviour and fate in the environment. To support such work, we developed new techniques for efficient tracing of Ag NPs that are produced from, and hence labelled with, enriched 109 28 Ag (Ag-En). The methods encompass a one-step anion exchange separation of Ag from the sample matrix and precise determination of 109Ag/107Ag ratios and 109Ag abundances by multiple-collector ICP-MS. The sample preparation procedure has an Ag yield of 104 ± 13% (1 SD) and a procedural Ag blank of less than 7 pg, enabling analysis of samples with only trace Ag contents. Analyses of Ag solutions and realistic samples show that careful correction of memory effects is paramount for ensuring data quality. Using appropriate procedures, the 109Ag/107Ag ratios of samples containing Ag-En can be determined to a precision and trueness of better than about 0.5%, when more than 0.5 ng Ag are available for analysis. Even if Ag is only present at 50 pg or less, the Ag isotope ratios and Ag-En concentrations of samples can be measured to better than 5 to 10%. The methods are therefore able to resolve the presence of 1 pg of Ag-En in samples that contain as little as 10 pg and to up to 1 ng of natural Ag. As such, the techniques allow robust detection and quantification of Ag-En in environmental samples even when highly variable quantities of Ag-En and natural Ag are present. The new methodology thus enables the use of stable isotope tracing to investigate the fate of Ag NPs in complex environmental systems at dosing concentrations similar to the predicted environmental concentrations and for very small samples, whilst also providing high sample throughput

    Optical studies of two LMC X-ray transients : RX J0544.1-7100 and RX J0520.5-6932

    Full text link
    We report observations which confirm the identities of the optical counterpart to the transient sources RX J0544.1-7100 and RX J0520.5-6932. The counterparts are suggested to be a B-type stars. Optical data from the observations carried out at ESO and SAAO, together with results from the OGLE data base, are presented. In addition, X-ray data from the RXTE all-sky monitor are investigated for long term periodicities. A strong suggestion for a binary period of 24.4d is seen in RX J0520.5-6932 from the OGLE data.Comment: 6 pages, 7 figure

    The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504

    Full text link
    A probable binary period has been detected in the optical counterpart to the X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504 in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul 2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is coincident with an Optical Gravitational Lensing (OGLE) object in the lightcurves of which several optical outburst peaks are visible at ~ 268 day intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99% significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s pulse-period has revealed detections which correspond closely with predicted or actual peaks in the optical data. The relationship between this orbital period and the pulse period of 504s is within the normal variance found in the Corbet diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
    • …
    corecore