25 research outputs found

    Lactobacillus fermentum ME-3 – an antimicrobial and antioxidative probiotic

    Get PDF
    The paper lays out the short scientific history and characteristics of the new probiotic Lactobacillus fermentum strain ME-3 DSM-14241, elaborated according to the regulations of WHO/FAO (2002). L. fermentum ME-3 is a unique strain of Lactobacillus species, having at the same time the antimicrobial and physiologically effective antioxidative properties and expressing health-promoting characteristics if consumed. Tartu University has patented this strain in Estonia (priority June 2001, patent in 2006), Russia (patent in 2006) and the USA (patent in 2007). The paper describes the process of the identification and molecular typing of this probiotic strain of human origin, its deposition in an international culture collection, and its safety assessment by laboratory tests and testing on experimental animals and volunteers. It has been established that L. fermentum strain ME-3 has double functional properties: antimicrobial activity against intestinal pathogens and high total antioxidative activity (TAA) and total antioxidative status (TAS) of intact cells and lysates, and it is characterized by a complete glutathione system: synthesis, uptake and redox turnover. The functional efficacy of the antimicrobial and antioxidative probiotic has been proven by the eradication of salmonellas and the reduction of liver and spleen granulomas in Salmonella Typhimurium-infected mice treated with the combination of ofloxacin and L. fermentum strain ME-3. Using capsules or foodstuffs enriched with L. fermentum ME-3, different clinical study designs (including double-blind, placebo-controlled, crossover studies) and different subjects (healthy volunteers, allergic patients and those recovering from a stroke), it has been shown that this probiotic increased the antioxidative activity of sera and improved the composition of the low-density lipid particles (LDL) and post-prandial lipids as well as oxidative stress status, thus demonstrating a remarkable anti-atherogenic effect. The elaboration of the probiotic L. fermentum strain ME-3 has drawn on wide international cooperative research and has taken more than 12 years altogether. The new ME-3 probiotic-containing products have been successfully marketed and sold in Baltic countries and Finland

    Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics

    Get PDF
    Background The liver is the first line of defence against continuously occurring influx of microbial-derived products and bacteria from the gut. Intestinal bacteria have been implicated in the pathogenesis of alcoholic liver cirrhosis. Escape of intestinal bacteria into the ascites is involved in the pathogenesis of spontaneous bacterial peritonitis, which is a common complication of liver cirrhosis. The association between faecal bacterial populations and alcoholic liver cirrhosis has not been resolved. Methods Relative ratios of major commensal bacterial communities (Bacteroides spp., Bifidobacterium spp., Clostridium leptum group, Enterobactericaea and Lactobacillus spp.) were determined in faecal samples from post mortem examinations performed on 42 males, including cirrhotic alcoholics (n = 13), non-cirrhotic alcoholics (n = 15), non-alcoholic controls (n = 14) and in 7 healthy male volunteers using real-time quantitative PCR (RT-qPCR). Translocation of bacteria into liver in the autopsy cases and into the ascites of 12 volunteers with liver cirrhosis was also studied with RT-qPCR. CD14 immunostaining was performed for the autopsy liver samples. Results Relative ratios of faecal bacteria in autopsy controls were comparable to those of healthy volunteers. Cirrhotics had in median 27 times more bacterial DNA of Enterobactericaea in faeces compared to the healthy volunteers (p = 0.011). Enterobactericaea were also the most common bacteria translocated into cirrhotic liver, although there were no statistically significant differences between the study groups. Of the ascites samples from the volunteers with liver cirrhosis, 50% contained bacterial DNA from Enterobactericaea, Clostridium leptum group or Lactobacillus spp.. The total bacterial DNA in autopsy liver was associated with the percentage of CD14 expression (p = 0.045). CD14 expression percentage in cirrhotics was significantly higher than in the autopsy controls (p = 0.004). Conclusions Our results suggest that translocation of intestinal bacteria into liver may be involved as a one factor in the pathogenesis of alcoholic liver cirrhosis.BioMed Central open acces
    corecore