1,333 research outputs found

    Adipocyte cholesterol balance in obesity.

    Get PDF
    Adipose tissue is specialized in the storage of energy in the form of triacylglycerol. Within the fat cell, triacylglycerols are found in a well-defined structural compartment called the lipid droplet, which occupies the vast majority of the fat cell volume. However, many other lipids are present in the lipid droplet. These include sterols, carotenoids, cholecalciferol and lipophilic toxic pollutants of the environment such as dioxins and tocopherols. The topic of this article is the role of fat cell cholesterol in adipose tissue physiology and its potential implication in pathological states such as obesity

    Connecting lipid droplet biology and the metabolic syndrome.

    Get PDF
    In the recent years, new advances in the biology of lipid droplets led these structures specialized for lipid storage to be considered as new universal intracellular organelles playing active roles in cell physiology. Concomitantly, studies on the pathogenesis of metabolic diseases such as type 2 diabetes or atherosclerosis, associated with ongoing epidemic obesity, have pointed out the importance of lipotoxic effects in metabolic dysfunction, generated by ectopic lipid storage in non-adipose tissues. The purpose of this paper is to establish connections between recent discoveries in lipid droplet biology and novel views in the pathology of the metabolic syndrome. Bringing together the new concepts produced in these two separated fields might show the way towards the definition of innovative strategies to treat metabolic diseases. Particular attention is given to the role of adipocyte-specific proteins that interact with lipid droplets and confer unique functions to adipocyte lipid storage by limiting the spill-over of fatty acids and their lipotoxic effects

    Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes.

    Get PDF
    Enlarged fat cells exhibit modified metabolic capacities, which could be involved in the metabolic complications of obesity at the whole body level. We show here that sterol regulatory element-binding protein 2 (SREBP-2) and its target genes are induced in the adipose tissue of several models of rodent obesity, suggesting cholesterol imbalance in enlarged adipocytes. Within a particular fat pad, larger adipocytes have reduced membrane cholesterol concentrations compared with smaller fat cells, demonstrating that altered cholesterol distribution is characteristic of adipocyte hypertrophy per se. We show that treatment with methyl-beta-cyclodextrin, which mimics the membrane cholesterol reduction of hypertrophied adipocytes, induces insulin resistance. We also produced cholesterol depletion by mevastatin treatment, which activates SREBP-2 and its target genes. The analysis of 40 adipocyte genes showed that the response to cholesterol depletion implicated genes involved in cholesterol traffic (caveolin 2, scavenger receptor BI, and ATP binding cassette 1 genes) but also adipocyte-derived secretion products (tumor necrosis factor alpha, angiotensinogen, and interleukin-6) and proteins involved in energy metabolism (fatty acid synthase, GLUT 4, and UCP3). These data demonstrate that altering cholesterol balance profoundly modifies adipocyte metabolism in a way resembling that seen in hypertrophied fat cells from obese rodents or humans. This is the first evidence that intracellular cholesterol might serve as a link between fat cell size and adipocyte metabolic activity

    A System for Optimizing Fertilizer Dosing in Innovative Smart Fertigation Pipelines: Modeling, Construction, Testing and Control

    Get PDF
    Smart fertigation is a topic of great interest in the effort to optimize different activities involved in local and extensive agriculture for assisting crops, optimizing production by using wireless technologies, data-processing electronic boards and sensors network. With the advent of Agriculture 4.0, similar to Industry 4.0, Information Communication Technology (ICT), associated with mechatronics, is giving an added value to this technique allowing optimization of water, fertilizers, control of water flow in pipes and period of irrigation. This paper intends to illustrate findings related to an innovative low cost system for assisting crops and achieving an accurate farming by investigating on the design, construction, testing and control of dosing system for liquid and granular fertilizers. Four different dosage systems have been designed, realized and tested with different granular and liquid fertilizers; the analysis of an extensive experimental campaign allows to define the characteristic and the mathematical expressions for each analyzed fertilizer and for each dosage system. The accurate modeling allows to control with extreme precision the realized dosing systems after estimating the quantity of fertilizer which the crop needs by means of the smart fertigation system. The obtained results permit the optimization of the fertilizer dosage in terms of quantity, which at the same time translates into lower production costs, greater environmental sustainability and optimization of production in terms of quantity and quality

    Torsional nodeless vibrations of quaking neutron star restored by combined forces of shear elastic and magnetic field stresses

    Full text link
    Within the framework of Newtonian magneto-solid-mechanics, relying on equations appropriate for a perfectly conducting elastic continuous medium threaded by a uniform magnetic field, the asteroseismic model of a neutron star undergoing axisymmetric global torsional nodeless vibrations under the combined action of Hooke's elastic and Lorentz magnetic forces is considered with emphasis on a toroidal Alfv\'en mode of differentially rotational vibrations about the dipole magnetic moment axis of the star. The obtained spectral equation for frequency is applied to \ell-pole identification of quasi-periodic oscillations (QPOs) of X-ray flux during the giant flares of SGR 1806-20 and SGR 1900+14. Our calculations suggest that detected QPOs can be consistently interpreted, within the framework of this model, as produced by global torsional nodeless vibrations of quaking magnetar if they are considered to be restored by the joint action of bulk forces of shear elastic and magnetic field stresses.Comment: 18 pages, 5 figures; accepted in Ap

    Decreased resistin expression in mice with different sensitivities to a high-fat diet

    Get PDF
    The regulation of resistin, a new adipose-derived circulating factor, is the subject of controversy. In particular, the question of its modulation in obesity led to opposite results reported by two different groups. In the current study, we assayed adipocyte resistin mRNA using fluorescent real-time RT-PCR. We studied the expression of resistin in mice which are differently sensitive to diet-induced obesity: the FVB/n strain, which poorly responds to high-fat diet and transgenic mice that express human alpha 2A-AR in adipose tissue in the absence of beta 3-adrenergic receptor (AR) under the FVB genetic background which are highly sensitive to high-fat diet and develop hyperplastic obesity. We observed that FVB mice, which have no significant increased body weight after an 8-week high-fat diet period, exhibited no alteration of resistin expression. In contrast, the transgenic mice developing high-fat diet-induced obesity exhibited markedly downregulated adipocyte resistin mRNA. We also showed that obesity induced by gold thioglucose injection in FVB/n mice reduces the expression of resistin in isolated adipocytes. This argues for decreased expression of resistin as a hallmark of obesity. Moreover, our data show that feeding a high-fat diet is not a primary determinant of resistin regulation

    Probing beta decay matrix elements through heavy ion charge exchange reactions

    Get PDF
    To access information on neutrinoless double beta decay (0νββ) nuclear matrix elements, it has been proposed by the NUMEN collaboration to exploit the analogies between double beta decay processes and double charge exchange (DCE) nuclear reactions, looking in particular at the conditions where the corresponding cross section can be factorized into nuclear reaction and nuclear structure terms. DCE reactions can be treated as a convolution of two correlated or uncorrelated single charge exchange (SCE) processes, resembling 0νββ and 2νββ, respectively. Thus it is important to model first SCE processes, to get a deeper insight into the possibility to factorize the corresponding cross section, so one can gain a better understanding of DCE cross section factorization. In this contribution, DCE reactions are discussed in terms of the convolution of two uncorrelated SCE processes, which should allow one to extract information on 2νββ nuclear matrix elements. These theoretical investigations are performed in close synergy with the experimental activity running at INFN-LNS within the NUMEN project
    corecore