2,522 research outputs found

    Interplay between valence and core excitation mechanisms in the breakup of halo nuclei

    Get PDF
    The phenomenon of core excitation in the breakup of a two-body halo nucleus is investigated. We show that this effect plays a significant role in the reaction dynamics and, furthermore, its interference with the valence excitation mechanism has sizable and measurable effects on the breakup angular distributions. These effects have been studied in the resonant breakup of 11Be on a carbon target, populating the resonances at 1.78 MeV (5/2+) and 3.41 MeV (3/2+). The calculations have been performed using a recently extension of the DWBA method, which takes into account the effect of core excitation in both the structure of the halo nucleus and in the reaction mechanism. The calculated angular distributions have been compared with the available data [Fukuda et al., Phys. Rev. C70,054606]. Although each of these resonances is dominated by one of the two considered mechanisms, the angular patterns of these resonances depend in a very delicate way on the interference between them. This is the first clear evidence of this effect but the phenomenon is likely to occur in other similar reactions.Comment: 5 pages, 2 figures, (Version to appear in Physical Review Letters

    Nuclear fusion as a probe for octupole deformation in 224^{224}Ra

    Full text link
    Background\textit{Background}: Nuclear fusion has been shown to be a perfect probe to study the different nuclear shapes. However, the possibility of testing octupole deformation of a nucleus with this tool has not been fully explored yet. The presence of a stactic octupole deformation in nuclei will enhanced a possible permanent electric dipole moment, leading to a possible demonstration of parity violation. Purpose\textit{Purpose}: To check whether static octupole deformation or octupole vibration in fusion give qualitatively different results so that both situations can be experimentally disentangled. Method\textit{Method}: Fusion cross sections are computed in the Coupled-Channels formalism making use of the Ingoing-Wave Boundary Conditions (IWBC) for the systems 16^{16}O+144^{144}Ba and 16^{16}O+224^{224}Ra. Results\textit{Results}: Barrier distributions of the two considered schemes show different patterns. For the 224^{224}Ra case, the octupole deformation parameter is large enough to create a sizeable difference. Conclusions\textit{Conclusions}: The measurement of barrier distributions can be an excellent probe to clarify the presence of octupole deformation.Comment: Important changes from previous version, 6 pages, 5 figures, 2 tables, submitted to Phys. Rev.

    Determining B(E1)B(E1) distributions of weakly bound nuclei from breakup cross sections using Continuum Discretized Coupled Channels calculations. Application to 11^{11}Be

    Full text link
    A novel method to extract the B(E1)B(E1) strength of a weakly bound nucleus from experimental Coulomb dissociation data is proposed. The method makes use of continuum discretized coupled channels (CDCC) calculations, in which both nuclear and Coulomb forces are taken into account to all orders. This is a crucial advantage with respect to the standard procedure based on the Equivalent Photon Method (EPM) which does not properly take into account nuclear distortion, higher order coupling effects, or Coulomb-nuclear interference terms. The procedure is applied to the 11^{11}Be nucleus using two sets of available experimental data at different energies, for which seemingly incompatible B(E1)B(E1) have been reported using the EPM. We show that the present procedure gives consistent B(E1)B(E1) strengths, thus solving the aforementioned long-standing discrepancy between the two measurements.Comment: Submitted for publicatio

    Continuum discretized BCS approach for weakly bound nuclei

    Get PDF
    The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum in order to analyse the evolution of pairing in an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.Comment: 20 pages, 16 figures, to be submitte

    Evidence of strong dynamic core excitation in 19^{19}C resonant break-up

    Get PDF
    The resonant break-up of 19^{19}C on protons measured at RIKEN [Phys. Lett. B 660, 320 (2008)] is analyzed in terms of a valence-core model for 19^{19}C including possible core excitations. The analysis of the angular distribution of a prominent peak appearing in the relative-energy spectrum could be well described with this model and is consistent with the previous assignment of 5/2+5/2^{+} for this state. Inclusion of core-excitation effects are found to be essential to give the correct magnitude of the cross section for this state. By contrast, the calculation assuming an inert 18^{18}C core is found to largely underestimate the data.Comment: 5 pages, 2 figures, to be submitte
    corecore