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Abstract.

The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the

single-particle continuum in order to analyse the evolution of pairing in an isotopic

chain from stability up to the drip line. We propose a continuum discretized generalized

BCS based on single-particle pseudostates (PS). These PS are generated from the

diagonalization of the single-particle Hamiltonian within a Transformed Harmonic

Oscillator (THO) basis. The consistency of the results versus the size of the basis

is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and

compared with similar previous works and available experimental data. We make use

of the flexibility of the proposed model in order to study the evolution of the occupation

of the low-energy continuum when the system becomes weakly bound. We find a larger

influence of the non-resonant continuum as long as the Fermi level approaches zero.
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1. Introduction

Nuclei far from the β-stability line are currently one of the most active fields in nuclear

physics. New radioisotope ion beam facilities are nowadays producing short-lived nuclei

at intermediate masses reaching the neutron drip-line, thus venturing into a hitherto

unknown domain of nuclear phenomena. In this region of the nuclear chart, the

ground state energy and the Fermi level approach the threshold for neutron emission,

therefore, the proper inclusion of continuum states becomes progressively more and more

important. The treatment of the continuum represents a challenge on both theoretical

and computational grounds. Different representations of the continuum have been used

and compared with few-body models [1–9]. These models are accurate in nuclei with

a strong clusterization into few stable fragments as it occurs in the light region of the

Segrè Chart. When moving to the study of heavier isotopes, these models require some

extension or additional ingredients [10–16].

On the other hand, the intermediate mass region of the Segrè Chart is the main

region of application of mean field approaches and the study of pairing. However,

known isotopes in this region are strongly bound so that traditional formulations of

many-body models do not include the continuum. In the field of many-body systems

the first attempt to include the single particle continuum is the Continuum Shell

Model (CSM) [17–19]. From this CSM, a BCS formulation was presented in [20] and

different variations have been explored either using the complex energy plane [21, 22],

diagonalizing in a box [23], or making use of continuum single particle level densities

(CSPLD) [24, 25]. Other formulations, which have been generalized to include the

continuum or at least its resonant part, are Hartree-Fock-BCS (HF-BCS) [26], Hartree-

Fock-Bogoliubov (HFB) [27–30]. Another approach is the complex scaling method,

in which a unitary transformation of the cut in the complex energy plane eases the

treatment of resonances of the many-body system [31, 32]. These resonances can also

be studied with the Gamow Shell Model (GSM) [33] together with its coupled-channel

representation (GSM-CC) [34, 35]. Finally also configuration-space Monte Carlo method

(CSMC) has been recently extended to the use of pairing within the continuum [36].

In some of these formulations, there is a separate treatment of resonant and

non-resonant parts of the continuum. Also regarding the discretization method for

the continuum, only box boundary condition or the Berggren representation in the

complex energy plane are predominantly used. Since one of the main problems in these

calculations is the computational cost, looking at a number of different basis sets in

order to optimize the convergence is a very important factor. It can be also interesting

to check the stability of the many-body approach versus different ways of discretizing

the continuum.

Therefore, we propose in this work the use of the Transformed Harmonic Oscillator

(THO) basis for the discretization of the continuum into a Generalized BCS formalism.

The prescription used here will be that of Karataglidis et al. [37] rather than that of

the original work by Stoitsov et al. [38]. This THO basis has been shown to reduce
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the computational cost in nuclear reactions within three- and four-body formalisms [8–

10, 39]. This, together with the flexibility of the THO basis shown in [5, 37] is crucial

here for exploring the role of the continuum when a nucleus becomes more and more

weakly bound. Another important fact is the possibility of treating both resonant and

non-resonant part of the continuum in a natural way and on the same footing. This

makes calculations simpler and more straightforward.

A HFB formalism can give a more accurate description, solving some of the

problems of the BCS plus continuum [40–42]. However, this choice implies an increase of

the complexity of the calculation and, therefore, a more difficult analysis of the results.

An alternative option is to keep the essence of the HFB equations in a simplified model

as done by I. Hamamoto and B. R. Mottelson [29, 30].

The present work is structured as follows. The method is described in Sec. 2.

First, we recall how to discretize the single-particle continuum with the THO basis

in subsection 2.1. Later, we describe the Generalized BCS formalism using the THO

pseudostates with a Density Dependent Delta Interaction in subsection 2.2. Finally, we

apply the formalism to Oxygen and Carbon isotopes in Sec. 3.

2. Methodology

2.1. Discretization of the single-particle continuum

In this subsection, we briefly review the features of the pseudo-states (PS) basis used

in this work. The THO basis is meant to describe the states of a composite system

consisting on two interacting inert fragments, such as a valence particle (proton/neutron)

and a spherical and stable core. In this case, the core+valence Hamiltonian is simply

given by:

hs.p. = Tr + Vvc(r) (1)

where ~r is the relative coordinate between the valence particle and the core, Tr the

core-valence kinetic energy operator and Vvc(r) is the interaction between the valence

particle and the core. The eigenstates of this Hamiltonian can be characterized by the

excitation energy (ε) and the set of quantum numbers {ℓ, s, j,m}, which correspond to

the orbital angular momentum (~ℓ), the valence spin (~s) and their vector sum (~j = ~ℓ+~s).

For a central potential with, possibly, a spin-orbit term, these states can be written as:

φε,ℓ,s,j,m(~r) = Rε,ℓ,j(r)Yℓsjm(r̂) (2)

where Yℓsjm(r̂) = [Yℓ(r̂) ⊗ χs]jm, with χs a spin function. The radial functions

Rε,ℓ,j(r) can be obtained by solving the Schrödinger equation with appropriate boundary

condition for bound (ε < 0) or unbound (ε > 0) states. Alternatively, these functions

can be obtained by diagonalizing the Hamiltonian (1) in a discrete basis. Since any

complete basis will be infinite, this procedure is not feasible in practice unless the

basis is truncated. By doing so, one obtains a finite (and approximate) expansion
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of the functions R(r) in the selected basis. If the basis functions are denoted by

ϕn,ℓ,s,j,m(~r) = Rbasis
n,ℓ (r)Yℓsjm(r̂), we will have:

Rα(r) =

N
∑

n=1

cα,nR
basis
n,ℓ (r) (3)

where α ≡ {ε, ℓ, j} and N is the number of states retained in the basis.

As already mentioned, there are many possible choices for the basis functions {ϕn}
(Gaussian, harmonic oscillator, Laguerre, etc). In this work we use the transformed

harmonic oscillator (THO) basis, obtained from the harmonic oscillator basis with

an appropriate local scale transformation (LST) as originally proposed by Stoitsov et

al. [43, 44].

If the LST function is denoted by s(r), the THO states are obtained as

RTHO
n,ℓ (r) =

√

ds

dr
RHO

n,ℓ [s(r)], (4)

where RHO
n,ℓ (s) is the radial part of the usual HO functions. With the criterion given

above, the LST is indeed not unique. Here, we adopted a parametric form for the LST

from Karataglidis et al. [37]

s(r) =





1
(

1
r

)m
+
(

1
γ
√
r

)m





1

m

, (5)

that depends on the parameters m and γ. The extension of RHO
n,ℓ (s) will also depend

on the oscillator length b. Note that, asymptotically, the function s(r) behaves as

s(r) ∼ γ
√
r and hence the functions obtained by applying this LST to the HO basis

behave at large distances as exp(−γ2r/(2b2)) = exp(−keffr). Therefore, the ratio γ/b

can be related to an effective linear momentum, keff = γ2/(2b2), which governs the

asymptotic behavior of the THO functions. As the ratio γ/b increases, the radial

extension of the basis decreases and, consequently, the eigenvalues obtained upon

diagonalization of the Hamiltonian in the THO basis tend to concentrate at higher

excitation energies. Therefore, γ/b determines the density of eigenstates as a function

of the excitation energy. In all the calculations presented in this work, the power m has

been taken as m = 4. This choice is discussed in Ref. [37] where the authors found that

the results are weakly dependent on m.

Note that, by construction, the family of functions RTHO
n,ℓ (r) constitute a complete

orthonormal set. Moreover, they decay exponentially at large distances, thus ensuring

the correct asymptotic behaviour for the bound wave functions. In practical calculations

a finite set of functions (4) is retained, and the single-particle Hamiltonian is diagonalized

in this truncated basis with N states, giving rise to a set of eigenvalues and their

associated eigenfunctions, denoted respectively by {εn} and {ϕ(N)
n,ℓ (r)} (n = 1, . . . , N).

As the basis size is increased, the eigenstates with negative energy will tend to the exact

bound states of the system, while those with positive eigenvalues can be regarded as a

finite representation of the unbound states.
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Generalizations of this basis can be found for three-body systems [8] and for two-

body systems with core excitations [39] with great success. Nevertheless, this is the first

time this basis is applied to the study of pairing in the continuum.

2.2. Generalized BCS with pseudostates

Now we solve the many-body Hamiltonian of N neutrons moving in a mean field. In

second quantization this Hamiltonian reads [45]:

H =
∑

hs.p. +
∑

klk′l′

vklk′l′a
†
ka

†
lak′al′ . (6)

In BCS the two-body interaction is reduced to those situations where two nucleons form

a strongly correlated pair of time reversal states. Therefore, if we define the pair creation

(and corresponding annihilation) operator:

P †
j =

∑

m>0

(−1)j−ma†jma
†
j−m, (7)

the previous Hamiltonian reads:

H =
∑

hs.p. −
∑

jj′

Gjj′P
†
j Pj′, (8)

where Gjj′ is a state-dependent coefficient that replaces vklk′l′ .

One should add to the sum over the different bound states, an integral over the

different momentum states defined in the single-particle continuum . However, with the

use of a discretized basis, we can turn this integral into a sum over different pseudostates.

Notice that the pair operator is not uniquely defined with j. For each j we would have

N pseudostates and, therefore, N different pair operators defined by ν → {n, j}, where

n is the label ordering in energy the pseudostates. From these N pair operators, we

will have one operator with associated negative single particle energy per each bound

state present in hs.p. and the rest up to N will have an associated positive single particle

energy so that they will create a Cooper pair in the continuum. The final number will

be smaller than N times the number of angular momenta considered since we have also

imposed a maximum energy cut off.

Therefore, we can continue with the traditional definition of the BCS function:

|BCS〉 = Πν(uν + vνP
†
ν )|0〉. (9)

Finally, we can obtain the corresponding BCS equations by minimizing the Hamiltonian

H with constraint on the number of particles, i.e.:

〈BCS|H − λN|BCS〉, (10)

where λ is the Fermi level. The problem can be recast into solving the following set of

non-linear coupled equations:
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









∆ν = 1
4

∑

ν′
(2j′+1)G

νν
′∆

ν
′√

(ε
ν
′−λ)2+∆2

ν
′

N =
∑

ν(2j + 1)v2ν ,

(11)

where εν is the single-particle energy and the coefficients u and v are given by:

v2ν =
1

2

(

1 − εν − λ
√

(εν − λ)2 + ∆2
ν

)

, (12)

u2
ν =

1

2

(

1 +
εν − λ

√

(εν − λ)2 + ∆2
ν

)

. (13)

2.3. The pairing interaction

In order to calculate the values of Gνν′ we make use of a Density Dependent Delta

Interaction (DDDI). For a general radial dependence of the delta interaction:

Vres(~r1 − ~r2) = V (r)δ(~r1 − ~r2), (14)

the final values of Gνν′ will be:

Gνν′ =
−1

2(4π)

∫ ∞

0

|Rν(r)|2|Rν′(r)|2V (r)r2dr, (15)

where Rν(r) are radial single-particle wavefunctions. The minus sign ensures that the

values of G are defined positive for any attractive interaction. In our case, the radial

form of the interaction is:

V (r) =

[

V0 − VI

(

ρ0

1 + exp r−R0

a0

)η]

, (16)

which can be accomodated to the more traditional form:

V (r) = V0

[

1 −
(

ρ(r)

ρ0

)η]

, (17)

for a certain selection of the parameters.

We can compare these results with the use of a constant pairing G. In [23–25], it has

already been shown that, in order to keep a constant G, a renormalization of the pairing

strength in the continuum is needed. In that sense, the results from [23–25] cannot be

directly compared with the use of a constant G here. With the use of a DDDI we hope

to recover this renormalization in a natural way without distinguishing resonant and

non-resonant continuum. This represents a major advantage of the present approach.

Finally, it should be said that the density ρ(r) is taken from a phenomenological

Woods-Saxon form adjusted to each case. No self-consistent recalculation of the density

is considered.
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Figure 1. (Color online) Two-neutron separation energies for the even neutron rich

oxygen isotopes. Experimental points contain error bars (sometimes invisible at this

scale).

3. Results

3.1. Oxygen isotopes

The isotopic chain of oxygen is the heaviest in atomic number with a well-known position

of the neutron drip-line. There are two isotopes, 26O and 28O, with experimentally

measured negative two-neutron separation energies (S2n), meaning that both nuclei are

unbound with respect to two-neutron emission [46].

In our calculations, we took a single-particle Hamiltonian able to reproduce the

spectrum of 17O taking the n-16O potential from Ref. [47]. We will include all partial

waves with ℓ ≤ 2. For constraining the pairing interaction, we use a volume term

with the geometry of this potential and a strength that reproduces the S2n in 18O. The

strength of VI is later renormalized for the following even oxygen isotopes so that it

follows the known 1/A dependence. The energy cut-off is set at 20 MeV. Therefore, all

free parameters are tied to the knowledge of stable isotopes. We then add one, two, three,

four, five and six pairs of neutrons to the 16O core in order to reach 28O. The theoretical

values obtained within the present framework for the two-neutron separation energies

compared with the experimental ones taken from [46] are shown in Fig. 1. Recently,

within the coupled-cluster theory [48] it has been possible to look at the binding energies

and the spectra of Oxygen (and also Carbon) isotopes. In our formalism we concentrate

on binding energies focusing on the evolution of superfluidity and the role of continuum.

In this calculation, the structure of 24O is not superfluid. Last bound orbitals

1d5/2 and 2s1/2 are fully occupied, so that the continuum and also the d3/2 resonance

are not significantly populated. Therefore we choose the closest isotope 22O where

the unoccupied 2n-hole in the 1d5/2 or 2s1/2 orbits enhances the effect of pairing, thus

increasing the population of the continuum. This can be understood by looking at the

∆ν found for the present value of the pairing strength as shown in Fig. 2 for 22O and in
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No Continuum
Continuum up to 20 MeV
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O

Figure 2. (Color online) Value of ∆ for the 1d5/2 orbit versus pairing strength for

Cooper pairs in the same 1d5/2 orbit for 22O with (dashed line) and without (solid

line) inclusion of the continuum. The red arrow show the pairing strength used in the

present calculations for 22O.

0 1 2
G

1d
5/2

-1d
5/2

 (MeV)

0

1

2

3

4

∆ 1d
5/

2  (
M

eV
)

No cont. (full)
Continuum up to 20 MeV

24
O

Figure 3. (Color online) Value of ∆ for the 1d5/2 orbit versus pairing strength for

Cooper pairs in the same 1d5/2 orbit for 24O with (dashed line) and without (solid

line) inclusion of the continuum. The red arrow show the pairing strength used in the

present calculations for 24O.

Fig. 3 for 24O.

In these figures we plot ∆ν versus Gνν of the single-particle ground state 1d5/2. The

red arrow in these figures indicates the pairing strength used in the present calculations

for these nuclei. We see that in 22O the arrow indicates a point located after the

transition to superfluidity, whereas in 24O the arrow is still far from the critical point.
24O appears, therefore, as a closed sub-shell nucleus. In [36], they applied the CSMC

method also to 24O obtaining a really small impact of the continuum on the total binding

energy in agreement with what is found here. We also compare with calculations without

the continuum in both figures. Strong deviations from this no-continuum reference are
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Figure 4. Convergence of ∆av. with the size of the basis. The X axis represents the

number of levels in the calculation divided by the cut off energy. The different points

correspond to N={60, 70, 80, 90, 100, 150, 200}.

not seen unless one forces the strength of the pairing well beyond its commonly accepted

values. This is something to be expected, if we take into account that the continuum

threshold is at 4.14 MeV in 17O, and this is a gap to be overcome with the help of

pairing. One should keep in mind that the single-particle spectrum varies along the

isotopic chain, so that by doing HF or similar calculations we expect this continuum

threshold to be reduced. Therefore, there is still a chance for 24O to be superfluid or at

least closer to superfluidity.

In order to study the convergence properties, we show, for instance, the average

∆av. in 22O with respect to the size of the basis. This quantity is defined as the weighted

sum over the corresponding occupations [40]:

∆av. =

∑

ν(2j + 1)∆νv
2
ν

∑

ν(2j + 1)v2ν
=

∑

ν(2j + 1)∆νv
2
ν

N . (18)

Since N is not a direct measurement of the final number of states considered in the

calculation, we define an average density of states. For each partial wave we keep Nj ≤ N

pseudostates, those with energies smaller than the energy cut off Ecut. Therefore, a way

to measure an average density of states is:

Av. density of states =

∑

j Nj

Ecut
. (19)

The result is shown in Fig. 4. One can see that the convergence is very good. These

results have been obtained for the following parameters of the basis: γ = 2.1 fm1/2 and

b = 2.1 fm. For the sake of convenience, we use N=100 for all the remaining calculations

in this work.

We show in Fig. 5 the occupancies v2ν in the continuum for the different partial

waves. We clearly see the dominant role of the low-lying d3/2 resonance creating a peak

around 1 MeV with an occupation several orders of magnitude larger than those of the

non-resonant continuum. In a discrete set the direct sum of these values should give
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Figure 5. (Color online) Density of occupation in the continuum for 22O for the

different partial waves.
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Figure 6. (Color online) Product of uv for 22O for the different partial waves. For

the pseudostates this quantity is divided by ∆ε so that it is represented in MeV−1

(vertical scale on the right). The red arrow indicates the Fermi level.

the total number of neutrons. However, in order to compare the results obtained with

different basis sizes, it is useful to define an approximate occupation density, such as:

v2cont.(ε) ≈
v2disc.
∆ε

, (20)

where we can approximate this ∆ε for the n-th pseudoestate as:

∆ε ≈ εn+1 − εn−1

2
. (21)

Following this prescription, for N→ ∞, the integral of v2disc./∆ε in Fig. 5 will be precisely

the total occupation in the continuum.

Other interesting observable is the product uv since it is connected with the pair

transition density and it should be maximum around the Fermi level. Therefore, this

quantity should be more sensitive to the presence of the continuum for weakly bound

nuclei. We show the results in Fig. 6 for 22O. For the bound states we represent the

direct product uv, whereas for continuum states we again divide by ∆ε.
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Figure 7. (Color online) Density of occupation in the continuum for 22O for the s-

waves when varying the depth of the potential V . The vertical lines show the position

of the bound state.

3.1.1. Dependence with the binding of the system In this section we will concentrate

on the 22O nucleus and focus on the sensitivity of the occupations to the binding of

the system. In order to do so, we will reduce the strength of the central potential that

determines the single-particle structure. Thus, last bound levels: 1d5/2 and 2s1/2 will

become progressively more weakly bound. Moreover, the Fermi level will get closer to

zero.

We start by looking at the occupation of the s-waves. Results are shown in linear

scale in Fig. 7. The x-axis represents the quasi-particle energy:

Eqp =
√

(ε− λ)2 + ∆2, (22)

so that the starting point for continuum states depends on the Fermi level λ. We see in

Fig. 7 how the maximum in the occupation distribution moves to smaller quasi-particle

energies when λ → 0. In addition, the coupling with a low-lying s-state increases the

occupation as already reported in [30] within a different framework. Its presence is only

appreciable for very small binding energies. The green dotted line in Fig. 7 corresponds

to λ = −0.00004 MeV.

The difference with respect to [30] is that here we do not include only s-waves, but

also a d5/2 bound state and s, p, and d continuum, where a d3/2 resonance appears.

We compare the strengths of the resonance and of the non-resonant continuum for this

extreme situation in Fig. 8 for the last two V values considered in the previous picture.

Again notice that the figure is in linear scale. We might conclude that the influence of the

non-resonant continuum becomes important for really weakly-bound systems. However,

for this case, we need to go to really extreme situations to overcome the dominance of

the resonant part.

The last question is whether p-waves follow the same behavior of the s-waves.

This can give us a clue of the role of the centrifugal barrier. We show in Fig. 9

the occupations for the p3/2-waves. Here, the density of occupation does not change



Continuum discretized BCS approach for weakly bound nuclei 12

0 2 4 6 8 10
E

qp
   (MeV)

0

0.0002

0.0004

0.0006

0.0008

0.001

v2 /∆
ε 

 (
M

eV
-1

)

s
1/2

 continuum
d

3/2
 continuum

22
O

(a)    V=-50 MeV
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Figure 8. (Color online) Density of occupation in the s1/2 (solid lines) and d3/2

(dashed lines) continua for 22O as a function of the quasi-particle energy for the two

smallest depths of the potential: V = −50 MeV in the left pannel andV = −47.5 MeV

in the right pannel.
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Figure 9. (Color online) Density of occupation in the p3/2 continuum for 22O as a

function of the quasi-particle energy when the depth of the potential V is varied.
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Figure 10. (Color online) Density of occupation in the d5/2 continuum for 22O as a

function of the quasi-particle energy when the depth of the potential V is varied. The

vertical lines show the position of the bound state.



Continuum discretized BCS approach for weakly bound nuclei 13

0 5 10 15
E

qp
   (MeV)

0.0000

0.0001

0.0002

0.0003

v2 /∆
ε 

 (
M

eV
-1

)

s
1/2

p
3/2

p
1/2

d
5/2

d
3/2

22
O  with λ=-0.0004 MeV

Figure 11. (Color online) Density of occupation in the continuum for 22O for

the different partial waves for a single-particle potential with central strength V =

−47.5 MeV.

significantly. However, if we look at the d5/2 continuum in Fig. 10, the occupation for

the less bound potential used here show an increase. Therefore, we might conclude that

the enhancement is related with the presence of a low-lying state with same angular

momentum.

Again, this occurs only for the extreme situation with an almost zero Fermi level.

We show in Fig. 11 the distribution of the occupation for the continuum including all

partial waves considered in the calculation. The total occupation for the main partial

waves is 0.4048 (6.75%) for the s1/2, 0.0002 (less than 0.01%) for the d5/2, and 0.0023

(0.04%) for the d3/2.

More examples of occupation in the continuum can be seen in [27, 28, 49]. In [28]

neutron rich nickel isotopes are studied, finding an occupation distribution for the s-

waves for 84Ni similar to the V = −50 MeV case. In [27, 49] mainly occupation for

resonances is studied.

3.2. Carbon isotopes

For carbon isotopes we start from 12C as a core and we keep the same single-particle

structure as in [24, 25]. We keep, therefore, the same potential, a Woods-Saxon with a

spin-orbit term whose strengths were fitted to reproduce the bound states in 13C and the

d3/2 resonance at 2.2 MeV. It produces as well a broad f7/2 resonance around 10 MeV.

In order to see also the effect of this resonance, we include partial waves up to ℓ = 3.

For the pairing strength, we include a volume term VI with η = 1 such that it

reproduces the same binding energy for 14C found in [24, 25]. The geometry of the

density is the same as in the single-particle potential. The strength of VI is later

renormalized for the following even carbon isotopes so that it follows the known 1/A

dependence. The energy cut-off is set at 20 MeV.

In [24, 25], the single-particle continuum is included via the CSPLD. The CSPLD

renormalizes the pairing strength and also prevents according to [24, 25] occupations
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Figure 13. (Color online) Two-neutron separation energies for the even neutron rich

isotopes of carbon.

larger than the expected degeneracy in the continuum. PS have been shown to carry the

information about the single-particle level density [5, 39] which can be reobtained from

the overlap of the PS with the actual scattering wave-functions. As seen in section 3.1.1,

it is not compulsory to impose externally a level density. The final occupancies in the

continuum, using only the bare PS, follow the behavior shown in [28, 30, 49]. Moreover,

the d3/2 resonance never carries more than 4, i.e. 2j + 1, neutrons.

In Fig. 12, we compare the binding energies obtained for neutron rich carbon

isotopes within the present work with those from [24, 25]. In [24], the CSPLD is

included in the formalism as an attempt to solve the problems of BCS with the Fermi

gas [40]. In [25] Richardson equations are solved which should give an exact solution

going beyond the BCS approximation. A good agreement is found between the results

in [25] and ours. Also in both calculations 24C is found to be unbound. Comparison
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Figure 14. (Color online) Density of occupation in the continuum for 20C for the

different partial waves.
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Figure 15. (Color online) Density of occupation in the continuum for 22C for the

different partial waves.

with the experimental data is also included. In Fig. 13 we show the comparison with

the experimental data for the two-neutron separation energies.

The occupation distributions for 20C and 22C are shown in Fig. 14 and Fig. 15

respectively. Compared with 22O we see immediately that these carbon isotopes are less

bound as expected from the smaller number of protons. The 2s1/2 state at −1.85 MeV

together with the Fermi level close to the threshold make so that the occupations of

the s-wave look like the last two cases shown for 22O, i.e. for V = −50 MeV and

V = −47.5 MeV. We also see the contribution from the two resonances: the narrow d3/2
and the broad f7/2 resonance. No occupations are shown for this case in [24, 25].

As an additional comment, we see here that the occupation of the resonance is

carried by more than one pseudostate. For a small size of the basis, one may have only

one pseudostate carrying the behavior of the resonance, so called resonant pseudostate.

However, when the size is large, there are situations where the resonance is split into

several pseudostates as here. This fact has to be taken in consideration when using
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Figure 16. (Color online) Segrè chart with the total sum of the product uv for the

different Oxygen and Carbon isotopes. Stable nuclei are shown in black and those

nuclei which are stable with respect to particle emission, in light grey.

pseudostates for BCS including only the resonant part. The selection of the pseudoestate

for representing the resonance should fit the stabilization method, see Ref. [11, 50, 51].

As already mentioned, the main advantage of the discretization with pseudostates is

the natural treatment of the continuum where resonant and non-resonant continuum

appears on the same footing.

To conclude this results section, we compare both isotopic chains in Fig. 16 by

means of total uv product. As we have already mentioned, this quantity is related to

the pair transition density reflecting the collectivity of the nucleus. We note in both

chains a maximum around N = 12. For N = 16 there is significant difference between

both chains, 24O behaves like a closed sub-shell nucleus whereas in 22C the product of

uv is still far from zero. This quantity is zero by construction for 16O and 12C.

4. Conclusions

We have demonstrated that the THO basis can be profitably used in the solution of

the BCS equations with a discretized single-particle continuum. The single-particle

Hamiltonian is constructed with a Wood-Saxon potential with parameters adjusted

to just one isotope for each chain in order to reproduce main bound states and first

resonances. This Hamiltonian is discretized in the THO basis. Once discretized,

Generalized BCS equations can be solved following the traditional formulation for bound

states. The different pairing couplings are calculated with a density-dependent delta

interaction (DDDI).

The Locale Scale Transformation (LST) applied to the HO wavefunctions allows

us to distribute the discretized states along the single-particle continuum almost on

demand. This characteristic makes the procedure explained here an easy and practical
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tool in the search for threshold effects related to pairing within weakly bound systems.

Such malleability is not present in the bases commonly used for the same scope.

This method has been applied to Oxygen and Carbon isotopic chains. For the

oxygen case we use the potential from Ref. [47] that reproduces the low-lying spectrum

of 17O. The DDDI is fixed to reproduced the two-neutron separation energy in 18O and

later renormalized for each even isotope according the well known factor 1/A. With

this set of parameters, the overall trend of the binding energies is reproduced and the

neutron drip-line appears in the right place. However, a small effect of the continuum

is found, as expected regarding the large separation between the last bound state and

the continuum threshold.

In order to investigate how the system and the importance of the continuum evolves

when this continuum threshold is reduced, we focused on 22O and reduced the binding

potential. An increase of the occupation near the threshold is found for s− and

d5/2−waves whereas a decrease is found for p−waves. We understand this is due to

the presence of a low-lying bound state with same spin and parity. The pairing of the

low-lying continuum to this last bound state is strong and increase as long as the Fermi

level approaches the continuum threshold. This effect was previously found in more

complex calculation for different cases, but only for s−states [28, 30].

Moreover, when the separation between the Fermi level and the continuum

threshold goes to zero, the contribution of the d3/2 resonance to the total occupation is

reduced in favor of these threshold contributions. This opens the possibility of situations

where the presence of the low-lying continuum is more important than the resonances

in the ground state of a many-body system. However, it seems to happen only for

extreamely weakly bound situations. This is the most interesting contributions of the

present manuscript. This conclusion is also based in the fact that the present model is

able to treat resonant and non-resonant continuum on the same footage.

Same procedure has been applied to Carbon isotopes, fitting the parameters

following a similar work by Id Betan [24, 25] in order to compare both methods. Our

results for the binding energies of the different isotopes coincide with this former work.

The drip-line is also found at the same place. However, experimental binding energies

are larger. As already stated in [24, 25], this should be attributed to the deformation.

The distributions of the occupation in 20C and 22C show similar features to those

found for 22O when reducing the binding energy of the single-particle states. In 22C,

the importance of the s continuum is almost of the same order than the d3/2 resonance.

However, deformation can change this situation, so that a BCS description based on

Nilsson rather than spherical states might be more accurate.

We are aware of the fact that, in coordinate space, densities obtained with a

continuum formulation of the BCS show certain drawbacks which could be connected

with the presence of an unphysical gas of neutrons. However, the present formalism

satisfies a compromise between accuracy and simplicity needed to pinpoint, control and

separate the different ingredients governing pairing in weakly-bound systems.

In conclusion, the simplicity of the present model has given us the flexibility required
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for exploring the evolution of many-body systems when becoming weakly bound. We

found situations where the non-resonant continuum cannot be neglected in favor of

resonances as previously commonly stated. However, these facts should be explored

increasing the complexity step by step in order to have a clear view of the behavior of

weakly bound system. The ability of the THO basis to concentrate states at the really

low-energy continuum, reducing the overall computational demand, might be of great

help in future attempts.
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[51] Lay J A, Arias J M, Gómez-Camacho J and Moro A M 2012 AIP Conf. Proc. 1488

436–440


	1 Introduction
	2   Methodology
	2.1   Discretization of the single-particle continuum
	2.2   Generalized BCS with pseudostates
	2.3 The pairing interaction

	3  Results
	3.1 Oxygen isotopes
	3.1.1  Dependence with the binding of the system

	3.2 Carbon isotopes

	4 Conclusions

