122 research outputs found

    Categorical Foundation of Quantum Mechanics and String Theory

    Full text link
    The unification of Quantum Mechanics and General Relativity remains the primary goal of Theoretical Physics, with string theory appearing as the only plausible unifying scheme. In the present work, in a search of the conceptual foundations of string theory, we analyze the relational logic developed by C. S. Peirce in the late nineteenth century. The Peircean logic has the mathematical structure of a category with the relation RijR_{ij} among two individual terms SiS_i and SjS_j, serving as an arrow (or morphism). We introduce a realization of the corresponding categorical algebra of compositions, which naturally gives rise to the fundamental quantum laws, thus indicating category theory as the foundation of Quantum Mechanics. The same relational algebra generates a number of group structures, among them W∞W_{\infty}. The group W∞W_{\infty} is embodied and realized by the matrix models, themselves closely linked with string theory. It is suggested that relational logic and in general category theory may provide a new paradigm, within which to develop modern physical theories.Comment: To appear in International Journal of Modern Physics

    Introduction to Categories and Categorical Logic

    Get PDF
    The aim of these notes is to provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by no means comprehensive, but should provide a good basis for further study; a guide to further reading is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions. An Appendix contains a summary of what we will need, and it may be useful to review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps, or groups and group homomorphisms - would be helpful.Comment: 96 page

    Relational lattices via duality

    Full text link
    The natural join and the inner union combine in different ways tables of a relational database. Tropashko [18] observed that these two operations are the meet and join in a class of lattices-called the relational lattices- and proposed lattice theory as an alternative algebraic approach to databases. Aiming at query optimization, Litak et al. [12] initiated the study of the equational theory of these lattices. We carry on with this project, making use of the duality theory developed in [16]. The contributions of this paper are as follows. Let A be a set of column's names and D be a set of cell values; we characterize the dual space of the relational lattice R(D, A) by means of a generalized ultrametric space, whose elements are the functions from A to D, with the P (A)-valued distance being the Hamming one but lifted to subsets of A. We use the dual space to present an equational axiomatization of these lattices that reflects the combinatorial properties of these generalized ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that these equations correspond to combinatorial properties of the dual spaces of lattices, in a technical sense analogous of correspondence theory in modal logic. In particular, this leads to an exact characterization of the finite lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven, Netherland

    Higher Structures in M-Theory

    Get PDF
    The key open problem of string theory remains its non-perturbative completion to M-theory. A decisive hint to its inner workings comes from numerous appearances of higher structures in the limits of M-theory that are already understood, such as higher degree flux fields and their dualities, or the higher algebraic structures governing closed string field theory. These are all controlled by the higher homotopy theory of derived categories, generalised cohomology theories, and L∞L_\infty-algebras. This is the introductory chapter to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. We first review higher structures as well as their motivation in string theory and beyond. Then we list the contributions in this volume, putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham Symposium Higher Structures in M-Theory, August 2018, references update

    Correlating matched-filter model for analysis and optimisation of neural networks

    Get PDF
    A new formalism is described for modelling neural networks by means of which a clear physical understanding of the network behaviour can be gained. In essence, the neural net is represented by an equivalent network of matched filters which is then analysed by standard correlation techniques. The procedure is demonstrated on the synchronous Little-Hopfield network. It is shown how the ability of this network to discriminate between stored binary, bipolar codes is optimised if the stored codes are chosen to be orthogonal. However, such a choice will not often be possible and so a new neural network architecture is proposed which enables the same discrimination to be obtained for arbitrary stored codes. The most efficient convergence of the synchronous Little-Hopfield net is obtained when the neurons are connected to themselves with a weight equal to the number of stored codes. The processing gain is presented for this case. The paper goes on to show how this modelling technique can be extended to analyse the behaviour of both hard and soft neural threshold responses and a novel time-dependent threshold response is described

    Topos theory and `neo-realist' quantum theory

    Full text link
    Topos theory, a branch of category theory, has been proposed as mathematical basis for the formulation of physical theories. In this article, we give a brief introduction to this approach, emphasising the logical aspects. Each topos serves as a `mathematical universe' with an internal logic, which is used to assign truth-values to all propositions about a physical system. We show in detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop "Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200

    Quantum Picturalism

    Full text link
    The quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. It allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation'. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly recent development in mathematics. These monoidal categories do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming languages, biology, cooking, ... The challenge is to discover the necessary additional pieces of structure that allow us to predict genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures, some colo

    Topos Theory and Consistent Histories: The Internal Logic of the Set of all Consistent Sets

    Get PDF
    A major problem in the consistent-histories approach to quantum theory is contending with the potentially large number of consistent sets of history propositions. One possibility is to find a scheme in which a unique set is selected in some way. However, in this paper we consider the alternative approach in which all consistent sets are kept, leading to a type of `many world-views' picture of the quantum theory. It is shown that a natural way of handling this situation is to employ the theory of varying sets (presheafs) on the space \B of all Boolean subalgebras of the orthoalgebra \UP of history propositions. This approach automatically includes the feature whereby probabilistic predictions are meaningful only in the context of a consistent set of history propositions. More strikingly, it leads to a picture in which the `truth values', or `semantic values' of such contextual predictions are not just two-valued (\ie true and false) but instead lie in a larger logical algebra---a Heyting algebra---whose structure is determined by the space \B of Boolean subalgebras of \UP.Comment: 28 pages, LaTe

    Positive definite metric spaces

    Full text link
    Magnitude is a numerical invariant of finite metric spaces, recently introduced by T. Leinster, which is analogous in precise senses to the cardinality of finite sets or the Euler characteristic of topological spaces. It has been extended to infinite metric spaces in several a priori distinct ways. This paper develops the theory of a class of metric spaces, positive definite metric spaces, for which magnitude is more tractable than in general. Positive definiteness is a generalization of the classical property of negative type for a metric space, which is known to hold for many interesting classes of spaces. It is proved that all the proposed definitions of magnitude coincide for compact positive definite metric spaces and further results are proved about the behavior of magnitude as a function of such spaces. Finally, some facts about the magnitude of compact subsets of l_p^n for p \le 2 are proved, generalizing results of Leinster for p=1,2, using properties of these spaces which are somewhat stronger than positive definiteness.Comment: v5: Corrected some misstatements in the last few paragraphs. Updated reference

    The fundamental pro-groupoid of an affine 2-scheme

    Full text link
    A natural question in the theory of Tannakian categories is: What if you don't remember \Forget? Working over an arbitrary commutative ring RR, we prove that an answer to this question is given by the functor represented by the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable absolute Galois group of RR when it is a field. This gives a new definition for \'etale \pi_1(\spec(R)) in terms of the category of RR-modules rather than the category of \'etale covers. More generally, we introduce a new notion of "commutative 2-ring" that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π1\pi_1 for the corresponding "affine 2-schemes." These results help to simplify and clarify some of the peculiarities of the \'etale fundamental group. For example, \'etale fundamental groups are not "true" groups but only profinite groups, and one cannot hope to recover more: the "Tannakian" functor represented by the \'etale fundamental group of a scheme preserves finite products but not all products.Comment: 46 pages + bibliography. Diagrams drawn in Tik
    • …
    corecore