225 research outputs found
Precompetitive consensus building to facilitate the use of digital health technologies to support Parkinson Disease drug development through regulatory science
Innovative tools are urgently needed to accelerate the evaluation and subsequent approval of novel treatments that may slow, halt, or reverse the relentless progression of Parkinson disease (PD). Therapies that intervene early in the disease continuum are a priority for the many candidates in the drug development pipeline. There is a paucity of sensitive and objective, yet clinically interpretable, measures that can capture meaningful aspects of the disease. This poses a major challenge for the development of new therapies and is compounded by the considerable heterogeneity in clinical manifestations across patients and the fluctuating nature of many signs and symptoms of PD. Digital health technologies (DHT), such as smartphone applications, wearable sensors, and digital diaries, have the potential to address many of these gaps by enabling the objective, remote, and frequent measurement of PD signs and symptoms in natural living environments. The current climate of the COVID-19 pandemic creates a heightened sense of urgency for effective implementation of such strategies. In order for these technologies to be adopted in drug development studies, a regulatory-aligned consensus on best practices in implementing appropriate technologies, including the collection, processing, and interpretation of digital sensor data, is required. A growing number of collaborative initiatives are being launched to identify effective ways to advance the use of DHT in PD clinical trials. The Critical Path for Parkinson’s Consortium of the Critical Path Institute is highlighted as a case example where stakeholders collectively engaged regulatory agencies on the effective use of DHT in PD clinical trials. Global regulatory agencies, including the US Food and Drug Administration and the European Medicines Agency, are encouraging the efficiencies of data-driven engagements through multistakeholder consortia. To this end, we review how the advancement of DHT can be most effectively achieved by aligning knowledge, expertise, and data sharing in ways that maximize efficiencies
Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes
Background
The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes.
Aim
To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave.
Methods
A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records.
Findings
In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home.
Conclusion
The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
The health effects of chemical waste in an urban community
This paper presents the results of a community health survey of people living near a hazardous chemical waste site in Kingston, Queensland. In comparison with a matched control group, people near the site were no more likely to report serious diseases, and reports of cancer and mortality rates did not differ in the two groups. Kingston residents reported higher rates of symptoms of general poor health, high levels of stress and anxiety and a higher incidence of miscarriages. The reports of poor physical health appear to be independent of proximity to the hazardous waste site and duration of residence in the area. Symptom prevalence and perceived recent decline in health correlate most strongly with the stress and anxiety measures. While long-term investigation is necesssary, it appears at this stage that the chemical waste is not associated with an increase in major diseases as reported by those who were interviewed. When health in a broader sense is considered, however, it is clear that the situation has had a negative impact
Formative Work Analysis to Design Caregiver Robots
This paper describes recent developments in a research project that seeks to explore and describe how caregiving robots should function by analyzing caregiving in elders ' homes, creating a detailed account of current elder care practices, and translating this account into design recommendations for caregiving robots. Categories and Subject Descriptor
- …