374 research outputs found

    A random cell motility gradient downstream of FGF controls elongation of amniote embryos

    Get PDF
    Vertebrate embryos are characterized by an elongated antero-posterior (AP) body axis, which forms by progressive cell deposition from a posterior growth zone in the embryo. Here, we used tissue ablation in the chicken embryo to demonstrate that the caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we analysed the movements of fluorescently labelled cells in the PSM during embryo elongation, which revealed a clear posterior-to-anterior gradient of cell motility and directionality in the PSM. We tracked the movement of the PSM extracellular matrix in parallel with the labelled cells and subtracted the extracellular matrix movement from the global motion of cells. After subtraction, cell motility remained graded but lacked directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. The gradient of cell motion along the PSM parallels the fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK) gradient1, which has been implicated in the control of cell motility in this tissue2. Both FGF signalling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Furthermore, embryos treated with cell movement inhibitors (blebbistatin or RhoK inhibitor), but not cell cycle inhibitors, show a slower axis elongation rate. We propose that the gradient of random cell motility downstream of FGF signalling in the PSM controls posterior elongation in the amniote embryo. Our data indicate that tissue elongation is an emergent property that arises from the collective regulation of graded, random cell motion rather than by the regulation of directionality of individual cellular movements

    Human α2β1HI CD133+VE epithelial prostate stem cells express low levels of active androgen receptor

    Get PDF
    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis

    The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

    Get PDF
    Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein. © 2013 Wasil et al

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Valproate, a Mood Stabilizer, Induces WFS1 Expression and Modulates Its Interaction with ER Stress Protein GRP94

    Get PDF
    Valproate is a standard treatment for bipolar disorder and a first-line mood stabilizer. The molecular mechanisms underlying its actions in bipolar disorder are unclear. It has been suggested that the action of valproate is linked to changes in gene expression and induction of endoplasmic reticulum (ER) stress-response proteins.Here we show that valproate modulates the ER stress response through the regulation of WFS1, an important component for mitigating ER stress. Therapeutic concentrations of valproate induce expression of WFS1 mRNA and activate the WFS1 promoter. In addition, WFS1 forms a complex with GRP94, an ER stress-response protein, in which valproate dose-dependently enhances its dissociation from GRP94.These results suggest that the therapeutic effects of valproate in bipolar disorder may be mediated by WFS1 expression and its dissociation from GRP94

    A multinational randomized, controlled, clinical trial of etoricoxib in the treatment of rheumatoid arthritis [ISRCTN25142273]

    Get PDF
    BACKGROUND: Etoricoxib is a highly selective COX-2 inhibitor which was evaluated for the treatment of rheumatoid arthritis (RA). METHODS: Double-blind, randomized, placebo and active comparator-controlled, 12-week study conducted at 67 sites in 28 countries. Eligible patients were chronic NSAID users who demonstrated a clinical worsening of arthritis upon withdrawal of prestudy NSAIDs. Patients received either placebo, etoricoxib 90 mg once daily, or naproxen 500 mg twice daily (2:2:1 allocation ratio). Primary efficacy measures included direct assessment of arthritis by counts of tender and swollen joints, and patient and investigator global assessments of disease activity. Key secondary measures included the Stanford Health Assessment Questionnaire, patient global assessment of pain, and the percentage of patients who achieved ACR20 responder criteria response (a composite of pain, inflammation, function, and global assessments). Tolerability was assessed by adverse events and routine laboratory evaluations. RESULTS: 1171 patients were screened, 891 patients were randomized (N = 357 for placebo, N = 353 for etoricoxib, and N = 181 for naproxen), and 687 completed 12 weeks of treatment (N = 242 for placebo, N = 294 for etoricoxib, and N = 151 for naproxen). Compared with patients receiving placebo, patients receiving etoricoxib and naproxen showed significant improvements in all efficacy endpoints (p<0.05). Treatment responses were similar between the etoricoxib and naproxen groups for all endpoints. The percentage of patients who achieved ACR20 responder criteria response was 41% in the placebo group, 59% in the etoricoxib group, and 58% in the naproxen group. Etoricoxib and naproxen were both generally well tolerated. CONCLUSIONS: In this study, etoricoxib 90 mg once daily was more effective than placebo and similar in efficacy to naproxen 500 mg twice daily for treating patients with RA over 12 weeks. Etoricoxib 90 mg was generally well tolerated in RA patients

    Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-kappa B pathways

    Get PDF
    RT-qPCR confirms (a) up-regulation of miR-34a, miR-146a, miR-542-3p and miR-503 in pilocytic astrocytomas. (b) low expression of miR-124*, miR-129 and miR-129* in pilocytic astrocytomas. Relative expression shown as Log2 fold change compared to normal adult cerebellum and frontal lobe (normalized to miR-423-3p). Data represent two technical replicates ± SD. (ZIP 516 kb

    Can Research Assessments Themselves Cause Bias in Behaviour Change Trials? A Systematic Review of Evidence from Solomon 4-Group Studies

    Get PDF
    BACKGROUND: The possible effects of research assessments on participant behaviour have attracted research interest, especially in studies with behavioural interventions and/or outcomes. Assessments may introduce bias in randomised controlled trials by altering receptivity to intervention in experimental groups and differentially impacting on the behaviour of control groups. In a Solomon 4-group design, participants are randomly allocated to one of four arms: (1) assessed experimental group; (2) unassessed experimental group (3) assessed control group; or (4) unassessed control group. This design provides a test of the internal validity of effect sizes obtained in conventional two-group trials by controlling for the effects of baseline assessment, and assessing interactions between the intervention and baseline assessment. The aim of this systematic review is to evaluate evidence from Solomon 4-group studies with behavioural outcomes that baseline research assessments themselves can introduce bias into trials. METHODOLOGY/PRINCIPAL FINDINGS: Electronic databases were searched, supplemented by citation searching. Studies were eligible if they reported appropriately analysed results in peer-reviewed journals and used Solomon 4-group designs in non-laboratory settings with behavioural outcome measures and sample sizes of 20 per group or greater. Ten studies from a range of applied areas were included. There was inconsistent evidence of main effects of assessment, sparse evidence of interactions with behavioural interventions, and a lack of convincing data in relation to the research question for this review. CONCLUSIONS/SIGNIFICANCE: There were too few high quality completed studies to infer conclusively that biases stemming from baseline research assessments do or do not exist. There is, therefore a need for new rigorous Solomon 4-group studies that are purposively designed to evaluate the potential for research assessments to cause bias in behaviour change trials

    Normal stem cells in cancer prone epithelial tissues

    Get PDF
    The concept of a cancer stem cell is not a new one, being first suggested over 100 years ago. Over recent years the concept has enjoyed renewed enthusiasm, partly because of our growing understanding of the nature of somatic stem cells, but also because of a growing realisation that the development of strategies that target cancer stem cells may offer considerable advantages over conventional approaches. However, despite this renewed enthusiasm the existence of cancer stem cells remains controversial in many tumour types and any potential relationship to the normal stem cell pool remains poorly defined. This review summarises key elements of our understanding of the normal stem cell populations within animal models of the predominant cancer prone epithelial tissues, and further investigates the potential links between these populations and putative cancer stem cells
    • …
    corecore