1,214 research outputs found

    Dupuytren's disease in bosnia and herzegovina. An epidemiological study

    Get PDF
    BACKGROUND: It is generally held that Dupuytren's disease is more common in northern than in southern Europe, but there are very few studies from southern European countries. METHODS: We examined the hands of 1207 men and women over the age of 50 years in Bosnia and Herzegovina. RESULTS: The prevalence of Dupuytren's disease was highly age-dependent, ranging from 17% for men between 50–59 years to 60% in the oldest men. The prevalence among women was lower. The great majority only had palmar changes without contracture of the digit. The prevalence was significantly lower among Bosnian Muslim men than among Bosnian Croat and Serbian men and significantly increased among diabetics. No association could be detected between Dupuytren's disease and smoking, alcohol consumption or living in rural or urban areas. CONCLUSION: We conclude that, contrary to previous opinion, Dupuytren's disease is common in Bosnia and Herzegovina

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples

    Get PDF
    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable disorder of childhood characterized by inattention, hyperactivity and impulsivity. Molecular genetic and pharmacological studies suggest the involvement of the dopaminergic, serotonergic and noradrenergic neurotransmitter systems in the pathogenesis of ADHD. Monoamine oxidase A (MAO-A) encodes an enzyme that degrades biogenic amines, including neurotransmitters such as norepinephrine, dopamine and serotonin. In this study we examined a 30 bp promoter variable number tandem repeat (VNTR) and a functional G/T single nucleotide polymorphism (SNP) at position 941 in exon 8 (941G/T) of MAO-A for association with ADHD in a Taiwanese sample of 212 ADHD probands. METHODS: Within-family transmission disequilibrium test (TDT) was used to analyse association of MAO-A polymorphisms with ADHD in a Taiwanese population. RESULTS: A nominally significant association was found between the G-allele of 941G/T in MAO-A and ADHD (TDT: P = 0.034. OR = 1.57). Haplotype analysis identified increased transmission of a haplotype consisting of the 3-repeat allele of the promoter VNTR and the G-allele of the 941G/T SNP (P = 0.045) to ADHD cases which the strong association with the G-allele drove. CONCLUSION: These findings suggest the importance of the 941G/T MAO-A polymorphism in the development of ADHD in the Taiwanese population. These results replicate previously published findings in a Caucasian sample

    Study of montelukast in children with sickle cell disease (SMILES): a study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Young children with sickle cell anaemia (SCA) often have slowed processing speed associated with reduced brain white matter integrity, low oxygen saturation, and sleep-disordered breathing (SDB), related in part to enlarged adenoids and tonsils. Common treatments for SDB include adenotonsillectomy and nocturnal continuous positive airway pressure (CPAP), but adenotonsillectomy is an invasive surgical procedure, and CPAP is rarely well-tolerated. Further, there is no current consensus on the ability of these treatments to improve cognitive function. Several double-blind, randomised controlled trials (RCTs) have demonstrated the efficacy of montelukast, a safe, well-tolerated anti-inflammatory agent, as a treatment for airway obstruction and reducing adenoid size for children who do not have SCA. However, we do not yet know whether montelukast reduces adenoid size and improves cognition function in young children with SCA. METHODS: The Study of Montelukast In Children with Sickle Cell Disease (SMILES) is a 12-week multicentre, double-blind, RCT. SMILES aims to recruit 200 paediatric patients with SCA and SDB aged 3-7.99 years to assess the extent to which montelukast can improve cognitive function (i.e. processing speed) and sleep and reduce adenoidal size and white matter damage compared to placebo. Patients will be randomised to either montelukast or placebo for 12 weeks. The primary objective of the SMILES trial is to assess the effect of montelukast on processing speed in young children with SCA. At baseline and post-treatment, we will administer a cognitive evaluation; caregivers will complete questionnaires (e.g. sleep, pain) and measures of demographics. Laboratory values will be obtained from medical records collected as part of standard care. If a family agrees, patients will undergo brain MRIs for adenoid size and other structural and haemodynamic quantitative measures at baseline and post-treatment, and we will obtain overnight oximetry. DISCUSSION: Findings from this study will increase our understanding of whether montelukast is an effective treatment for young children with SCA. Using cognitive testing and MRI, the SMILES trial hopes to gain critical knowledge to help develop targeted interventions to improve the outcomes of young children with SCA. TRIAL REGISTRATION: ClinicalTrials.gov NCT04351698 . Registered on April 17, 2020. European Clinical Trials Database (EudraCT No. 2017-004539-36). Registered on May 19, 2020

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Terrestrialization, Miniaturization and Rates of Diversification in African Puddle Frogs (Anura: Phrynobatrachidae)

    Get PDF
    Terrestrialization, the evolution of non-aquatic oviposition, and miniaturization, the evolution of tiny adult body size, are recurring trends in amphibian evolution, but the relationships among the traits that characterize these phenomena are not well understood. Furthermore, these traits have been identified as possible “key innovations” that are predicted to increase rates of speciation in those lineages in which they evolve. We examine terrestrialization and miniaturization in sub-Saharan puddle frogs (Phrynobatrachidae) in a phylogenetic context to investigate the relationship between adaptation and diversification through time. We use relative dating techniques to ascertain if character trait shifts are associated with increased diversification rates, and we evaluate the likelihood that a single temporal event can explain the evolution of those traits. Results indicate alternate reproductive modes evolved independently in Phrynobatrachus at least seven times, including terrestrial deposition of eggs and terrestrial, non-feeding larvae. These shifts towards alternate reproductive modes are not linked to a common temporal event. Contrary to the “key innovations” hypothesis, clades that exhibit alternate reproductive modes have lower diversification rates than those that deposit eggs aquatically. Adult habitat, pedal webbing and body size have no effect on diversification rates. Though these traits putatively identified as key innovations for Phrynobatrachus do not seem to be associated with increased speciation rates, they may still provide opportunities to extend into new niches, thus increasing overall diversity

    The Transmembrane Domain of CEACAM1-4S Is a Determinant of Anchorage Independent Growth and Tumorigenicity

    Get PDF
    CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues

    Targeting cholesterol-rich microdomains to circumvent tamoxifen-resistant breast cancer

    Get PDF
    Adjuvant treatment with tamoxifen substantially improves survival of women with estrogen-receptor positive (ER+) tumors. Tamoxifen resistance (TAMR) limits clinical benefit. RRR alpha tocopherol ether-linked acetic acid analogue (alpha-TEA) is a small bioactive lipid with potent anticancer activity. We evaluated the ability of alpha-TEA in the presence of tamoxifen to circumvent TAMR in human breast cancer cell lines. Methods: Two genotypically matched sets of TAM-sensitive (TAMS) and TAM-resistant (TAMR) human breast cancer cell lines were assessed for signal-transduction events with Western blotting, apoptosis induction with Annexin V-FITC/PI assays, and characterization of cholesterol-rich microdomains with fluorescence staining. Critical involvement of selected mediators was determined by using RNA interference and chemical inhibitors. Results: Growth-factor receptors (total and phosphorylated forms of HER-1 and HER-2), their downstream prosurvival mediators pAkt, pmTOR, and pERK1/2, phosphorylated form of estrogen receptor-alpha (pER-alpha at Ser-167 and Ser-118, and cholesterol-rich lipid microdomains were highly amplified in TAMR cell lines and enhanced by treatment with TAM. alpha-TEA disrupted cholesterol-rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators, and induced DR5-mediated mitochondria-dependent apoptosis via an endoplasmic reticulum stress-triggered pro-death pJNK/CHOP/DR5 amplification loop. Furthermore, methyl-beta-cyclodextrin (M beta CD), a chemical disruptor of cholesterol rich microdomains, acted cooperatively with TAM to reduce prosurvival mediators and to induce apoptosis. Conclusions: Data for the first time document that targeting cholesterol-rich lipid microdomains is a potential strategy to circumvent TAMR, and the combination of alpha-TEA + TAM can circumvent TAMR by suppression of prosurvival signaling via disruption of cholesterol-rich lipid microdomains and activation of apoptotic pathways via induction of endoplasmic reticulum stress.Clayton Foundation for ResearchCenter for Molecular and Cellular Toxicology at the University of TexasNIEHS/NIH T32 ES07247Nutritional Science
    corecore