3,769 research outputs found

    Global Spinors and Orientable Five-Branes

    Full text link
    Fermion fields on an M-theory five-brane carry a representation of the double cover of the structure group of the normal bundle. It is shown that, on an arbitrary oriented Lorentzian six-manifold, there is always an Sp(2) twist that allows such spinors to be defined globally. The vanishing of the arising potential obstructions does not depend on spin structure in the bulk, nor does the six-manifold need to be spin or spin-C. Lifting the tangent bundle to such a generalised spin bundle requires picking a generalised spin structure in terms of certain elements in the integral and modulo-two cohomology of the five-brane world-volume in degrees four and five, respectively.Comment: 18 pages, LaTeX; v2: version to appear in JHE

    Twisted topological structures related to M-branes

    Full text link
    Studying the M-branes leads us naturally to new structures that we call Membrane-, Membrane^c-, String^K(Z,3)- and Fivebrane^K(Z,4)-structures, which we show can also have twisted counterparts. We study some of their basic properties, highlight analogies with structures associated with lower levels of the Whitehead tower of the orthogonal group, and demonstrate the relations to M-branes.Comment: 17 pages, title changed on referee's request, minor changes to improve presentation, typos correcte

    Ritual Intuitions: Cognitive Contributions to Judgments of Ritual Efficacy

    Full text link
    Lawson and McCauley (1990) have argued that non-cultural regularities in how actions are conceptualized inform and constrain participants' understandings of religious rituals. This theory of ritual competence generates three predictions: 1) People with little or no knowledge of any given ritual system will have intuitions about the potential effectiveness of a ritual given minimal information about the structure of the ritual. 2) The representation of superhuman agency in the action structure will be considered the most important factor contributing to effectiveness. 3) Having an appropriate intentional agent initiate the action will be considered relatively more important than any specific action to be performed. These three predictions were tested in two experiments with 128 North American Protestant college students who rated the probability of various fictitious rituals to be effective in bringing about a specified consequence. Results support Lawson and McCauley's predictions and suggest that expectations regarding ordinary social actions apply to religious rituals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43718/1/10881_2004_Article_brill_15677095_v1n2_s4.pd

    51 Eri and GJ 3305: A 10-15 Myr old binary star system at 30 parsecs

    Full text link
    Following the suggestion of Zuckerman et al. (2001, ApJ, 562, L87), we consider the evidence that 51 Eri (spectral type F0) and GJ 3305 (M0), historically classified as unrelated main sequence stars in the solar neighborhood, are instead a wide physical binary system and members of the young beta Pic moving group (BPMG). The BPMG is the nearest (d < 50 pc) of several groups of young stars with ages around 10 Myr that are kinematically convergent with the Oph-Sco-Cen Association (OSCA), the nearest OB star association. Combining SAAO optical photometry, Hobby-Eberly Telescope high-resolution spectroscopy, Chandra X-ray data, and UCAC2 catalog kinematics, we confirm with high confidence that the system is indeed extremely young. GJ 3305 itself exhibits very strong magnetic activity but has rapidly depleted most of its lithium. The 51 Eri/GJ 3305 system is the westernmost known member of the OSCA, lying 110 pc from the main subgroups. The system is similar to the BPMG wide binary HD 172555/CD -64d1208 and the HD 104237 quintet, suggesting that dynamically fragile multiple systems can survive the turbulent environments of their natal giant molecular cloud complexes, while still being imparted high dispersion velocities. Nearby young systems such as these are excellent targets for evolved circumstellar disk and planetary studies, having stellar ages comparable to that of the late phases of planet formation.Comment: 27 pages, 7 figures. Accepted for publication in the Astronomical Journal. For a version with high resolution figures, see http://www.astro.psu.edu/users/edf/51Eri.pd

    Chimeric antigens displaying GPR65 extracellular loops on a soluble scaffold enabled the discovery of antibodies, which recognized native receptor

    Get PDF
    GPR65 is a proton-sensing G-protein coupled receptor associated with multiple immune-mediated inflammatory diseases, whose function is relatively poorly understood. With few reagents commercially available to probe the biology of receptor, generation of an anti-GPR65 monoclonal antibody was desired. Using soluble chimeric scaffolds, such as ApoE3, displaying the extracellular loops of GPR65, together with established phage display technology, native GPR65 loop-specific antibodies were identified. Phage-derived loop-binding antibodies recognized the wild-type native receptor to which they had not previously been exposed, generating confidence in the use of chimeric soluble proteins to act as efficient surrogates for membrane protein extracellular loop antigens. This technique provides promise for the rational design of chimeric antigens in facilitating the discovery of specific antibodies to GPCRs

    The evolution of X-ray emission in young stars

    Full text link
    We study the relation between age and magnetic activity in late-type pre-main sequence (PMS) stars, for the first time using mass-stratified subsamples. The effort is based on the Chandra Orion Ultradeep Project (COUP) which provides very sensitive and homogenous X-ray data on a uniquely large sample of 481 optically well-characterized low-extinction low-mass members of the Orion Nebula Cluster, for which individual stellar masses and ages could be determined. More than 98 percent of the stars in this sample are detected as X-ray sources. Within the PMS phase for stellar ages in the range 0.110\sim 0.1-10 Myr, we establish a mild decay in activity with stellar age τ\tau roughly as LXτ1/3L_{\rm X} \propto \tau^{-1/3}. On longer timescales, when the Orion stars are compared to main sequence stars, the X-ray luminosity decay law for stars in the 0.5<M<1.20.5 < M < 1.2 M_\odot mass range is more rapid with LXτ0.75L_{\rm X} \propto \tau^{-0.75} over the wide range of ages 5<logτ<9.55 < \log \tau < 9.5 yr. The magnetic activity history for M stars with masses 0.1<M<0.4M0.1 < M < 0.4 M_\odot is distinctly different. Only a mild decrease in X-ray luminosity, and even a mild increase in LX/LbolL_{\rm X}/L_{\rm bol} and FXF_{\rm X}, is seen over the 1-100 Myr range, though the X-ray emission does decay over long timescales on the main sequence. Together with COUP results on the absence of a rotation-activity relation in Orion stars, we find that the activity-age decay is strong across the entire history of solar-type stars but is not attributable to rotational deceleration during the early epochs. A combination of tachocline and distributed convective dynamos may be operative in young solar-type stars. The results for the lowest mass stars are most easily understood by the dominance of convective dynamos during both the PMS and main sequence phases.Comment: accepted for ApJS, COUP special issu
    corecore