7 research outputs found

    Stable Transformant of Phalaenopsis amabilis Somatic Embryo Carrying 35S::AtRKD4 Develops Into Normal Phenotype of Transgenic Plant

    Get PDF
    Phalaenopsis amabilis (L.) Blume orchid is an Indonesian national flower. The number of these orchids in their natural habitat is very limited, therefore plant propagation efforts are needed. One of the promising methods is plant propagation by inserting embryo gene AtRKD4 from a model plant Arabidopsis thaliana into the orchid genome to produce many somatic embryos. From previous research, we have obtained 28 plant P. amabilis transformants carrying the AtRKD4 gene, however, it was unknown whether these plants have normal phenotypes and growth similar to their parents. Therefore, descriptions on growth and morphology are needed. This research aimed to evaluate the phenotype of P. amabilis carrying 35S::AtRKD4 the transformants grown in greenhouse. To achieve it, AtRKD4 gene integration stability on transformants genome was analyzed. Morphology and cross-section anatomy structure on transformant and non-transformant plantswere described. The stability of AtRKD4 gene integration in the plant genome was confirmed by amplification of the AtRKD4 gene from genomic DNA with Polymerase Chain Reaction (PCR) using a specific primer for AtRKD4 and ACTIN genes as the internal control. The quantitative data from morphology and anatomy measurements were analyzed statistically using ANOVA. The results showed that AtRKD4 was stably integrated into the genome of P. amabilis transformants and all transformant plants showed similar morphology and anatomy characteristics as non-transformant plants. The AtRKD4 embryo gene was stably integrated into the orchid genome and the transformant plants grow normally without significant changes in phenotype

    In Vitro Germination and Flowering of Dendrobium capra J.J. Smith, An Endemic Orchid of Java

    Get PDF
    Dendrobium capra is an Indonesian endemic orchid species that live in Java. It grows on low altitude with warm climate. D. capra has beautiful small yellow greenish flower that grow in raceme inflorescence. This orchid faces a threat in its natural habitat due to having a long life cycle and a forestry main commodity as a main host thus categorized as Appendix II on CITES list. To address that problem, ex situ conservation approach using in vitro culture method is necessary. Germination enhancement effort using complex organic substances found that 200 ml/l tomato extract gave best germination result. Analysis on D. capra plantlet growth also showed that MS medium produced better plantlet size than NP, VW and KC medium. Supplementing medium with a combination of NAA and TDZ has also successfully induced early flowering within 11 month of culture period. This information is important to achieve successful in vitro culture of D. capra for various purposes

    Early detection of the orchid flowering gene PaFT1 in tobacco cells using a GFP reporter

    Get PDF
    Here we describe a novel method of using green fluorescence protein (GFP) as a reporter gene for early detection of an integrated T­DNA containing the orchid flowering gene, PaFT1 (Phalaenopsis aphrodite Flowering locus T1) in the tobacco genome. Functional assays that report the presence of exogenous DNA early in development are especially useful in plants where the desired phenotype is only apparent after long periods of vegetative growth. The objective of this study is to establish a method for detecting an inserted Phalaenopsis orchid flowering gene and examining its function in tobacco. The p35S::PaFT1­ 35S::GFP construct was introduced into Agrobacterium tumefaciens strain EHA101. Transformed tobacco leaves were cultured on MS medium with addition of 1 mgL-1 NAA+3 mgL-1 BAP+50 mgL-1 Kanamycin+300 mgL-1 timentin for selection. Results showed bright green GFP fluorescent signals in 11 out of 15 (73%) tobacco leaf cells at a 2­month time point after transformation. GFP and PaFT1 fragments were amplified in genomic PCR using GFP and PaFT1 specific primers. The accumulated PaFT1 transcripts were observed in 3 month­old transgenic tobacco plants containing p35S::PaFT1­35S::GFP. Green florescence was observed only in the transgenic plants at the 5 month­old stage but not in the wild type controls

    Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids

    Get PDF
    Orchid is an important ornamental plant in Indonesia due to their natural beauty of flowers. In the tropical forest, orchids are being acquired for trading and commercial market. Thus, the effort is required to proliferate orchid in large quantities for conservation and improve the floral variation for plant breeding. The purpose of this study is to develop a firmed methodology of molecular breeding of orchids using CRISPR/Cas9 KO system. The plant material used was Phalaenopsis amabilis protocorms growth on NP medium+pepton (2 g/L). Protocorm were submerged in the culture of Agrobacterium tumefaciens that Ti‐plasmid had been filled with a T‐DNA construct of a pRGEB32 vector harboring sgRNA with PDS3 sequence. Detection for transformants was confirmed by PCR using HPT primers (545 bp), Cas9 primers (402 bp), PDS primers (280 bp) and trnL‐F (1200 bp) as an internal control. The results showed that 0.96% PDS transformants were obtained from PDS3T2 lines. Several transformant showed pale leaf color compared to non‐transformant plants. This study suggests that the target gene has successfully edited by CRISPR/Cas9 system and could be applied for that functional gene editing in orchids

    Stable transformant of Phalaenopsis amabilis somatic embryo carrying 35S::AtRKD4 develops into normal phenotype of transgenic plant

    Get PDF
    Phalaenopsis amabilis (L.) Blume orchid is an Indonesian national flower. The number of these orchids in their natural habitat is very limited, therefore plant propagation efforts are needed. One of the promising methods is plant propagation by inserting embryo gene AtRKD4 from a model plant Arabidopsis thaliana into the orchid genome to produce many somatic embryos. From previous research, we have obtained 28 plant P. amabilis transformants carrying the AtRKD4 gene, however, it was unknown whether these plants have normal phenotypes and growth similar to their parents. Therefore, descriptions on growth and morphology are needed. This research aimed to evaluate the phenotype of P. amabilis carrying 35S::AtRKD4 the transformants grown in greenhouse. To achieve it, AtRKD4 gene integration stability on transformants genome was analyzed. Morphology and cross-section anatomy structure on transformant and non-transformant plantswere described. The stability of AtRKD4 gene integration in the plant genome was confirmed by amplification of the AtRKD4 gene from genomic DNA with Polymerase Chain Reaction (PCR) using a specific primer for AtRKD4 and ACTIN genes as the internal control. The quantitative data from morphology and anatomy measurements were analyzed statistically using ANOVA. The results showed that AtRKD4 was stably integrated into the genome of P. amabilis transformants and all transformant plants showed similar morphology and anatomy characteristics as non-transformant plants. The AtRKD4 embryo gene was stably integrated into the orchid genome and the transformant plants grow normally without significant changes in phenotype

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Stable transformant of phalaenopsis amabilis somatic embryo carrying 35s::atrkd4 develops into normal phenotype of transgenic plant

    No full text
    Phalaenopsis amabilis (L.) Blume orchid is an Indonesian national flower. The number of these orchids in their natural habitat is very limited, therefore plant propagation efforts are needed. One of the promising methods is plant propagation by inserting embryo gene AtRKD4 from a model plant Arabidopsis thaliana into the orchid genome to produce many somatic embryos. From previous research, we have obtained 28 plant P. amabilis transformants carrying the AtRKD4 gene, however, it was unknown whether these plants have normal phenotypes and growth similar to their parents. Therefore, descriptions on growth and morphology are needed. This research aimed to evaluate the phenotype of P. amabilis carrying 35S::AtRKD4 the transformants grown in greenhouse. To achieve it, AtRKD4 gene integration stability on transformants genome was analyzed. Morphology and cross-section anatomy structure on transformant and non-Transformant plants were described. The stability of AtRKD4 gene integration in the plant genome was confirmed by amplification of the AtRKD4 gene from genomic DNA with Polymerase Chain Reaction (PCR) using a specific primer for AtRKD4 and ACTIN genes as the internal control. The quantitative data from morphology and anatomy measurements were analyzed statistically using ANOVA. The results showed that AtRKD4 was stably integrated into the genome of P. amabilis transformants and all transformant plants showed similar morphology and anatomy characteristics as non-Transformant plants. The AtRKD4 embryo gene was stably integrated into the orchid genome and the transformant plants grow normally without significant changes in phenotype. © 2021 Universitas Gadjah Mada, Faculty of Biology. All rights reserved
    corecore