2,097 research outputs found

    Perturbative nonequilibrium dynamics of phase transitions in an expanding universe

    Get PDF
    A complete set of Feynman rules is derived, which permits a perturbative description of the nonequilibrium dynamics of a symmetry-breaking phase transition in λϕ4\lambda\phi^4 theory in an expanding universe. In contrast to a naive expansion in powers of the coupling constant, this approximation scheme provides for (a) a description of the nonequilibrium state in terms of its own finite-width quasiparticle excitations, thus correctly incorporating dissipative effects in low-order calculations, and (b) the emergence from a symmetric initial state of a final state exhibiting the properties of spontaneous symmetry breaking, while maintaining the constraint 0\equiv 0. Earlier work on dissipative perturbation theory and spontaneous symmetry breaking in Minkowski spacetime is reviewed. The central problem addressed is the construction of a perturbative approximation scheme which treats the initial symmetric state in terms of the field ϕ\phi, while the state that emerges at later times is treated in terms of a field ζ\zeta, linearly related to ϕ2\phi^2. The connection between early and late times involves an infinite sequence of composite propagators. Explicit one-loop calculations are given of the gap equations that determine quasiparticle masses and of the equation of motion for and the renormalization of these equations is described. The perturbation series needed to describe the symmetric and broken-symmetry states are not equivalent, and this leads to ambiguities intrinsic to any perturbative approach. These ambiguities are discussed in detail and a systematic procedure for matching the two approximations is described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.

    Nonequilibrium perturbation theory for complex scalar fields

    Full text link
    Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention is given to the effects of a non-zero chemical potential, and it is found that the thermal masses and decay widths of quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to Phys. Rev.

    LANDSAT Applications in Georgia: A Successful Example of Technology Transfer between NASA and State Government

    Get PDF
    Over the past several years the State of Georgia has been using Landsat data to assist state and federal program managers in their decision-making efforts. The Georgia effort has been staffed by the Environmental Protection Division, Department of Natural Resources which has served to coordinate efforts between the Corps of Engineers, Soil Conservation Service, Georgia Forestry Commission, Department of Community Affairs, Game and Fish Division, and several local governments. This paper will deal with the technical and administrative steps which have led to an operational Landsat effort in Georgia. These steps will include technology transfer from NASA to State agencies, the merging of technology with existing state programs, and the role of the Department of Natural Resources and the Georgia Institute of Technology

    Treatment options for recurrent glioblastoma: a network meta-analysis

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows:. To evaluate the effectiveness of further treatment/s for first and subsequent recurrence of glioblastoma multiforme (GBM) among people who have received the standard of care for primary treatment of the disease (chemoradiotherapy) or following development of GBM from a lower grade (radiotherapy with subsequent temozolomide at relapse); and to prepare a brief economic commentary on the available evidence

    Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides

    Get PDF
    Copyright @ 2012 John Wiley & SonsThe miRNA expression profiles of skin biopsies from 14 primary cutaneous anaplastic large cell lymphoma (C-ALCL) patients were analysed with miRNA microarrays using the same control group of 12 benign inflammatory dermatoses (BID) as previously used to study the miRNA expression profile of tumor-stage mycosis fungoides (MF). We identified 13 differentially expressed miRNAs between C-ALCL and BID. The up-regulation of miR-155, miR-27b, miR-30c and miR-29b in C-ALCL was validated by miRNA-Q-PCR on independent study groups. Additionally, the miRNA expression profiles of C-ALCL were compared with those of tumor-stage MF. Although miRNA microarray analysis did not identify statistically significant differentially expressed miRNAs, miRNA-Q-PCR demonstrated statistically significantly differential expression of miR-155, miR-27b, miR-93, miR-29b and miR-92a between tumor-stage MF and C-ALCL. This study, the first describing the miRNA expression profile of C-ALCL, reveals differences with tumor-stage MF, suggesting a different contribution to the pathogenesis of these lymphomas.This work was funded by grants from Netherlands Organization for Scientific Research (NWO) (MHV) and the Fondation Rene´ Touraine (MvK), and grants from the Leukaemia and Lymphoma Research (EB) and the Julian Starmer-Smith Memorial Fund (CHL)

    Scaling in high-temperature superconductors

    Full text link
    A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature superconductors, namely critical-point scaling and that due to the confinement of electron pairs to their lowest Landau level in the presence of an applied magnetic field. In the neighbourhood of the zero-field critical point, thermodynamic functions scale with the scaling variable (TTc2(B))/B1/2ν(T-T_{c2}(B))/B^{1/2\nu}, which differs from the variable (TTc(0))/B1/2ν(T - T_c(0))/B^{1/2\nu} suggested by the gaussian approximation. Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding the upper critical field line but not in the vicinity of the zero-field transition. For YBaCuO in particular, a field of at least 10 T is needed to observe LLL scaling. These results are consistent with a range of recent experimental measurements of the magnetization, transport properties and, especially, the specific heat of high-TcT_c materials.Comment: 22 pages + 1 figure appended as postscript fil

    Dissipation in equations of motion of scalar fields

    Get PDF
    The methods of non-equilibrium quantum field theory are used to investigate the possibility of representing dissipation in the equation of motion for the expectation value of a scalar field by a friction term, such as is commonly included in phenomenological inflaton equations of motion. A sequence of approximations is exhibited which reduces the non-equilibrium theory to a set of local evolution equations. However, the adiabatic solution to these evolution equations which is needed to obtain a local equation of motion for the expectation value is not well defined; nor, therefore, is the friction coefficient. Thus, a non-equilibrium treatment is essential, even for a system that remains close to thermal equilibrium, and the formalism developed here provides one means of achieving this numerically.Comment: 17 pages, 5 figure

    Large-N transition temperature for superconducting films in a magnetic field

    Full text link
    We consider the NN-component Ginzburg-Landau model in the large NN limit, the system being embedded in an external constant magnetic field and confined between two parallel planes a distance LL apart from one another. On physical grounds, this corresponds to a material in the form of a film in the presence of an external magnetic field. Using techniques from dimensional and zetazeta-function regularization, modified by the external field and the confinement conditions, we investigate the behavior of the system as a function of the film thickness LL. This behavior suggests the existence of a minimal critical thickness below which superconductivity is suppressed.Comment: Revtex, two column, 4 pages, 2 figure
    corecore