5,251 research outputs found

    Situating emotional experience

    Get PDF
    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the “default mode” network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional life

    Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    Get PDF
    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations

    Primary interoceptive cortex activity during simulated experiences of the body

    Get PDF
    Studies of the classic exteroceptive sensory systems (e.g., vision, touch) consistently demonstrate that vividly imagining a sensory experience of the world – simulating it – is associated with increased activity in the corresponding primary sensory cortex. We hypothesized, analogously, that simulating internal bodily sensations would be associated with increased neural activity in primary interoceptive cortex. An immersive, language-based mental imagery paradigm was used to test this hypothesis (e.g., imagine your heart pounding during a roller coaster ride, your face drenched in sweat during a workout). During two neuroimaging experiments, participants listened to vividly described situations and imagined “being there” in each scenario. In Study 1, we observed significantly heightened activity in primary interoceptive cortex (of dorsal posterior insula) during imagined experiences involving vivid internal sensations. This effect was specific to interoceptive simulation: it was not observed during a separate affect focus condition in Study 1, nor during an independent Study 2 that did not involve detailed simulation of internal sensations (instead involving simulation of other sensory experiences). These findings underscore the large-scale predictive architecture of the brain and reveal that words can be powerful drivers of bodily experiences

    An International Study Abroad Experience in a Counselor Education Doctoral Cohort

    Full text link
    As one component of a doctoral level course, the importance of multicultural competencies has been emphasized particularly in the areas of counseling and counselor education (Boysen & Vogel, 2008; Diaz-Lazaro & Cohen, 2001; Dickson, Jepsen, & Barbee, 2008). Therefore, the perceptions and experiences of six doctoral counselor education students who traveled to Puebla, Mexico, are explored in this phenomenological research. As a result of their participation in a variety of assignments and cultural immersion activities, the following themes emerged: Respect for Hispanic traditions; revised professional perceptions; an awareness of services abroad; and the impact of experiential learning. In particular, the importance of experiential learning and multicultural competencies for counselors and counselor educators are discussed

    Benchmark solutions for the galactic heavy-ion transport equations with energy and spatial coupling

    Get PDF
    Nontrivial benchmark solutions are developed for the galactic heavy ion transport equations in the straightahead approximation with energy and spatial coupling. Analytical representations of the ion fluxes are obtained for a variety of sources with the assumption that the nuclear interaction parameters are energy independent. The method utilizes an analytical LaPlace transform inversion to yield a closed form representation that is computationally efficient. The flux profiles are then used to predict ion dose profiles, which are important for shield design studies

    Encouraging practitioners in infection prevention and control to publish: a cross-sectional survey

    Get PDF
    Aim: The aim of this cross-sectional survey was to determine the views of infection prevention and control practitioners (IPCPs) on publishing research. Methods: A convenience sample was obtained by approaching delegates at the 2015 Infection Prevention Society conference and data was captured via a hand-held electronic device. Findings: Of the 79 respondents most (83%) read Journal of Infection Prevention (JIP) and found it useful for informing their practice (72%). However, most (91%) had never published in JIP, and less than half (40%) published elsewhere. The main barrier to publication was not having work suitable for publication (38%). Support (37%), training in writing for publication (10%) and time (9%) were considered to be important facilitators in encouraging respondents to publish. Discussion: Strategies that support IPCPs in developing their writing skills may encourage more IPCPs to disseminate evidence to support best practice by publishing their work in peer reviewed journals

    A Hierarchy of Transport Approximations for High Energy Heavy (HZE) Ions

    Get PDF
    The transport of high energy heavy (HZE) ions through bulk materials is studied neglecting energy dependence of the nuclear cross sections. A three term perturbation expansion appears to be adequate for most practical applications for which penetration depths are less than 30 g per sq cm of material. The differential energy flux is found for monoenergetic beams and for realistic ion beam spectral distributions. An approximate formalism is given to estimate higher-order terms

    Wind measurement system

    Get PDF
    A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed
    corecore