12,414 research outputs found

    Co-presence Communities: Using pervasive computing to support weak social networks

    No full text
    Although the strongest social relationships feature most prominently in our lives, we also maintain a multitude of much weaker connections: the distant colleagues that we share a coffee with in the afternoon; the waitress at a our regular sandwich bar; or the ‘familiar stranger’ we meet each morning on the way to work. These are all examples of weak relationships which have a strong spatial-temporal component but with few support systems available. This paper explores the idea of ‘Co-presence Communities’ - a probabilistic definition of groups that are regularly collocated together - and how they might be used to support weak social networks. An algorithm is presented for mining the Copresence Community definitions from data collected by Bluetooth-enabled mobile phones. Finally, an example application is introduced which utilises these communities for disseminating information

    Dimensional Duality

    Get PDF
    We show that string theory on a compact negatively curved manifold, preserving a U(1)^{b_1} winding symmetry, grows at least b_1 new effective dimensions as the space shrinks. The winding currents yield a "D-dual" description of a Riemann surface of genus h in terms of its 2h dimensional Jacobian torus, perturbed by a closed string tachyon arising as a potential energy term in the worldsheet sigma model. D-branes on such negatively curved manifolds also reveal this structure, with a classical moduli space consisting of a b_1-torus. In particular, we present an AdS/CFT system which offers a non-perturbative formulation of such supercritical backgrounds. Finally, we discuss generalizations of this new string duality.Comment: 25 pages, harvmac. v2: fixed typo. v3: fixed typos and added ref

    The use of chronosequences in studies of ecological succession and soil development

    Get PDF
    1. Chronosequences and associated space-for-time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time-scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development. 2. Chronosequences are appropriate to study plant succession at decadal to millennial time-scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time-scales of centuries to millennia, sometimes independently of their application to shorter-term plant and soil biological communities. 3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach. 4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species-rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages. 5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences

    A Selection Rule for Transitions in PT-Symmetric Quantum Theory

    Get PDF
    Carl Bender and collaborators have developed a quantum theory governed by Hamiltonians that are PT-symmetric rather than Hermitian. To implement this theory, the inner product was redefined to guarantee positive norms of eigenstates of the Hamiltonian. In the general case, which includes arbitrary time-dependence in the Hamiltonian, a modification of the Schrödinger equation is necessary as shown by Gong and Wang to conserve probability. In this paper, we derive the following selection rule: transitions induced by time dependence in a PT-symmetric Hamiltonian cannot occur between normalized states of differing PT-norm. We show three examples of this selection rule in action: two matrix models and one in the continuum

    A Selection Rule for Transitions in PT-Symmetric Quantum Theory

    Get PDF
    Carl Bender and collaborators have developed a quantum theory governed by Hamiltonians that are PT-symmetric rather than Hermitian. To implement this theory, the inner product was redefined to guarantee positive norms of eigenstates of the Hamiltonian. In the general case, which includes arbitrary time-dependence in the Hamiltonian, a modification of the Schrödinger equation is necessary as shown by Gong and Wang to conserve probability. In this paper, we derive the following selection rule: transitions induced by time dependence in a PT-symmetric Hamiltonian cannot occur between normalized states of differing PT-norm. We show three examples of this selection rule in action: two matrix models and one in the continuum

    The Measurement of Capacity

    Get PDF

    Assessing Alternatives for Directional Detection of a WIMP Halo

    Get PDF
    The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can large range of WIMP parameter space using well tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.Comment: 4 pages, including 2 figues and 2 tables, submitted to PR
    corecore