9 research outputs found

    The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle

    Get PDF
    Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites

    The genome sequence of the spiny starfish, Marthasterias glacialis (Linnaeus, 1758) [version 1; peer review: 2 approved, 1 approved with reservations]

    No full text
    We present a genome assembly from an individual Marthasterias glacialis (the spiny starfish; Echinodermata; Asteroidea; Forcipulatida; Asteriidae). The genome sequence is 521 megabases in span. The majority of the assembly, 99.44%, is scaffolded into 22 chromosomal pseudomolecules. The mitochondrial genome has also been assembled, and is 16 kb in span

    The genome sequence of the blue-rayed limpet, Patella pellucida Linnaeus, 1758 [version 1; peer review: 2 approved]

    No full text
    We present a genome assembly from an individual Patella pellucida (the blue-rayed limpet; Mollusca; Gastropoda; Patellidae). The genome sequence is 712 megabases in span. The majority of the assembly (99.85%) is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome was assembled and is 14.9 kilobases in length

    Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages

    Get PDF
    Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterized by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. Further experiments are required to establish whether this protein, currently of unknown function, plays a role in gamete formation and/or fusion

    Rapid evolution of female-biased genes among four species of Anopheles

    No full text
    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues

    A chromosomal reference genome sequence for the malaria mosquito, Anopheles gambiae, Giles, 1902, Ifakara strain [version 2; peer review: 2 approved]

    No full text
    We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length

    Specimen and sample metadata standards for biodiversity genomics: a proposal from the Darwin Tree of Life project

    Get PDF
    The vision of the Earth BioGenome Project1 is to complete reference genomes for all of the planet’s ~2M described eukaryotic species in the coming decade. To contribute to this global endeavour, the Darwin Tree of Life Project  (DToL2) was launched in 2019 with the aim of generating complete genomes for the ~70k described eukaryotic species that can be found in Britain and Ireland. One of the early tasks of the DToL project was to determine, define, and standardise the important metadata that must accompany every sample contributing to this ambitious project. This ensures high-quality contextual information is available for the associated data, enabling a richer set of information upon which to search and filter datasets as well as enabling interoperability between datasets used for downstream analysis. Here we describe some of the key factors we considered in the process of determining, defining, and documenting the metadata required for DToL project samples. The manifest and Standard Operating Procedure that are referred to throughout this paper are likely to be useful for other projects, and we encourage re-use while maintaining the standards and rules set out here.</ns4:p

    Why sequence all eukaryotes?

    No full text
    Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life.We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine

    Standards recommendations for the Earth BioGenome Project

    No full text
    A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met
    corecore