155 research outputs found

    Unexpected reductions in regional cerebral perfusion during prolonged hypoxia

    Get PDF
    KEY POINTS: Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the ‘default mode’ or ‘task negative’ network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO(2)) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance. ABSTRACT: Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the ‘default mode’ or ‘task negative’ network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO(2)) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady‐state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory

    Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes

    Get PDF
    Acknowledgements The Rowett Institute of Nutrition and Health (University of Aberdeen) receives financial support from the Scottish Government Rural and Environmental Sciences and Analytical Services (RESAS). POS is a PhD student supported by the Scottish Government (RESAS) and the Science Foundation Ireland, through a centre award to the APC Microbiome Institute, Cork, Ireland. Data Summary The high-quality draft genomes generated in this work were deposited at the European Nucleotide Archive under the following accession numbers: 1. Eubacterium rectale T1-815; CVRQ01000001–CVRQ0100 0090: http://www.ebi.ac.uk/ena/data/view/PRJEB9320 2. Roseburia faecis M72/1; CVRR01000001–CVRR010001 01: http://www.ebi.ac.uk/ena/data/view/PRJEB9321 3. Roseburia inulinivorans L1-83; CVRS01000001–CVRS0 100 0151: http://www.ebi.ac.uk/ena/data/view/PRJEB9322Peer reviewedPublisher PD

    Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

    Get PDF
    BACKGROUND: Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq. RESULTS: Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 16S rRNA gene datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset. CONCLUSION: The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454 sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing

    Plasma biomarkers of neurodegeneration in mild cognitive impairment with Lewy bodies

    Get PDF
    BACKGROUND: Blood biomarkers of Alzheimer's disease (AD) may allow for the early detection of AD pathology in mild cognitive impairment (MCI) due to AD (MCI-AD) and as a co-pathology in MCI with Lewy bodies (MCI-LB). However not all cases of MCI-LB will feature AD pathology. Disease-general biomarkers of neurodegeneration, such as glial fibrillary acidic protein (GFAP) or neurofilament light (NfL), may therefore provide a useful supplement to AD biomarkers. We aimed to compare the relative utility of plasma Aβ42/40, p-tau181, GFAP and NfL in differentiating MCI-AD and MCI-LB from cognitively healthy older adults, and from one another. METHODS: Plasma samples were analysed for 172 participants (31 healthy controls, 48 MCI-AD, 28 possible MCI-LB and 65 probable MCI-LB) at baseline, and a subset (n = 55) who provided repeated samples after ≥1 year. Samples were analysed with a Simoa 4-plex assay for Aβ42, Aβ40, GFAP and NfL, and incorporated previously-collected p-tau181 from this same cohort. RESULTS: Probable MCI-LB had elevated GFAP (p < 0.001) and NfL (p = 0.012) relative to controls, but not significantly lower Aβ42/40 (p = 0.06). GFAP and p-tau181 were higher in MCI-AD than MCI-LB. GFAP discriminated all MCI subgroups, from controls (AUC of 0.75), but no plasma-based marker effectively differentiated MCI-AD from MCI-LB. NfL correlated with disease severity and increased with MCI progression over time (p = 0.011). CONCLUSION: Markers of AD and astrocytosis/neurodegeneration are elevated in MCI-LB. GFAP offered similar utility to p-tau181 in distinguishing MCI overall, and its subgroups, from healthy controls

    Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States—all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition
    corecore