3,443 research outputs found
Turning Brownfields into Jobfields
A handbook for practitioners and citizens on making brownfields development work
Multiconfiguration Time-Dependent Hartree-Fock Treatment of Electronic and Nuclear Dynamics in Diatomic Molecules
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is
formulated for treating the coupled electronic and nuclear dynamics of diatomic
molecules without the Born- Oppenheimer approximation. The method treats the
full dimensionality of the electronic motion, uses no model interactions, and
is in principle capable of an exact nonrelativistic description of diatomics in
electromagnetic fields. An expansion of the wave function in terms of
configurations of orbitals whose dependence on internuclear distance is only
that provided by the underlying prolate spheroidal coordinate system is
demonstrated to provide the key simplifications of the working equations that
allow their practical solution. Photoionization cross sections are also
computed from the MCTDHF wave function in calculations using short pulses.Comment: Submitted to Phys Rev
Optimization of Advertising Resources over Time: A Strategic Analysis
AMS subject classification: 90B60, 90B50, 90A80.Strategic behaviour has long been a crucial issue for modern corporations. To maximize potential profits and market share, firms are more than willing to invest in
sales promotion to boost long term manufacturing output. Knowing that the sales
of the firm not only respond to own advertising budgets, but also depend upon
rivals’ advertising strategies, oligopolistic firms form part, therefore of a continuous
race with reference to non-price competition. Efficient use of investment resources
is crucial for business operations and long term strategic success. This paper aims
to investigate the key issue of optimization of strategic advertising outlays. By using mathematical modelling techniques, strategic linkages between rival companies
are identified and advertising impacts explained. Since advertising influences can
persist through time, our discussion extends to explore this fundamental point by
constructing a more advanced model to examine into the problems of optimization
over time. Empirical data is used to test the predictive power of these models
and assess relative efficiencies. All in all, this paper intends to highlight the importance of continuous strategic advertising investment and consequently provides
comprehensive insights into the impact of modern advertising functions over time
Conformal invariance in two-dimensional turbulence
Simplicity of fundamental physical laws manifests itself in fundamental
symmetries. While systems with an infinity of strongly interacting degrees of
freedom (in particle physics and critical phenomena) are hard to describe, they
often demonstrate symmetries, in particular scale invariance. In two dimensions
(2d) locality often promotes scale invariance to a wider class of conformal
transformations which allow for nonuniform re-scaling. Conformal invariance
allows a thorough classification of universality classes of critical phenomena
in 2d. Is there conformal invariance in 2d turbulence, a paradigmatic example
of strongly-interacting non-equilibrium system? Here, using numerical
experiment, we show that some features of 2d inverse turbulent cascade display
conformal invariance. We observe that the statistics of vorticity clusters is
remarkably close to that of critical percolation, one of the simplest
universality classes of critical phenomena. These results represent a new step
in the unification of 2d physics within the framework of conformal symmetry.Comment: 10 pages, 5 figures, 1 tabl
Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM
We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E = Delta(0). We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k = +/-(pi/a(0), 0) to k = +/-(0, pi/a(0)). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k = +/-(pi/a(0), 0) and k = +/-(0, pi/a(0)). In both phases, the only broken symmetries detected for the vertical bar E vertical bar < Delta(0) states are those of a d-wave superconductor. The second class of states occurs proximate to the PG energy scale E = Delta(1). Here the non-dispersive electronic structure breaks the expected 90 degrees-rotational symmetry of electronic structure within each unit cell, at least down to 180 degrees-rotational symmetry. This electronic symmetry breaking was first detected as an electronic inequivalence at the two oxygen sites within each unit cell by using a measure of nematic (C-2) symmetry. Incommensurate non-dispersive conductance modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E = Delta(1). Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E similar to Delta(1) are found to be indistinguishable in the dSC and PG phases. The next challenge for SI-STM studies is to determine the relationship of the E similar to Delta(1) broken symmetry electronic states with the PG phase, and with the E < Delta(0) states associated with Cooper pairing.Publisher PDFPeer reviewe
Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile
The rotor-router model is a deterministic analogue of random walk. It can be
used to define a deterministic growth model analogous to internal DLA. We prove
that the asymptotic shape of this model is a Euclidean ball, in a sense which
is stronger than our earlier work. For the shape consisting of
sites, where is the volume of the unit ball in , we show that
the inradius of the set of occupied sites is at least , while the
outradius is at most for any . For a related
model, the divisible sandpile, we show that the domain of occupied sites is a
Euclidean ball with error in the radius a constant independent of the total
mass. For the classical abelian sandpile model in two dimensions, with particles, we show that the inradius is at least , and the
outradius is at most . This improves on bounds of Le Borgne
and Rossin. Similar bounds apply in higher dimensions.Comment: [v3] Added Theorem 4.1, which generalizes Theorem 1.4 for the abelian
sandpile. [v4] Added references and improved exposition in sections 2 and 4.
[v5] Final version, to appear in Potential Analysi
The Hitting Times with Taboo for a Random Walk on an Integer Lattice
For a symmetric, homogeneous and irreducible random walk on d-dimensional
integer lattice Z^d, having zero mean and a finite variance of jumps, we study
the passage times (with possible infinite values) determined by the starting
point x, the hitting state y and the taboo state z. We find the probability
that these passages times are finite and analyze the tails of their cumulative
distribution functions. In particular, it turns out that for the random walk on
Z^d, except for a simple (nearest neighbor) random walk on Z, the order of the
tail decrease is specified by dimension d only. In contrast, for a simple
random walk on Z, the asymptotic properties of hitting times with taboo
essentially depend on the mutual location of the points x, y and z. These
problems originated in our recent study of branching random walk on Z^d with a
single source of branching
Fe I Oscillator Strengths for the Gaia-ESO Survey
The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale
study of multi-element chemical abundances of some 100 000 stars in the Milky
Way with the ultimate aim of quantifying the formation history and evolution of
young, mature and ancient Galactic populations. However, in preparing for the
analysis of GES spectra, it has been noted that atomic oscillator strengths of
important Fe I lines required to correctly model stellar line intensities are
missing from the atomic database. Here, we present new experimental oscillator
strengths derived from branching fractions and level lifetimes, for 142
transitions of Fe I between 3526 {\AA} and 10864 {\AA}, of which at least 38
are urgently needed by GES. We also assess the impact of these new data on
solar spectral synthesis and demonstrate that for 36 lines that appear
unblended in the Sun, Fe abundance measurements yield a small line-by-line
scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with
recent publications.Comment: Accepted for publication in Mon. Not. R. Astron. So
THE IMPACT OF THE 2008 OIL PRICE COLLAPSE ON KUWAIT GDP 2008-2012: AN ESTIMATION BASED ON STOCHASTIC LOGISTICAL METHODS
In this paper we utilize a stochastic differenced logistic process to model the annualized Kuwaiti GNPfor the years2002 to 2012 incorporating the world oil price collapse that occurred in the third quarter of 2008 late 2009 .The fitted stochastic differenced logistic model is then used to investigate the properties and behaviour ofKuwait real GDP given the impact of the 2008 price crash on short run economic growth.The derived stochastic differenced logisticaloutput is shown to be robust in terms of goodness of fit, capturing the jumpeffect of the oil price collapse on the real GDP .This approach is unique in estimating oil price shock effects on the GDP for oil export dependent economies. Finally, the approach delivers robust estimation parameters passing standard diagnostic tests
- …