5,311 research outputs found
Recommended from our members
An Observational Perspective On Some Aspects Of Early Stellar Nucleosynthesis
Some basic abundance results for low metallicity stars that were formed in the early days of the Milky Way Galaxy are summarized. Discussion is centered on two nucleosynthetic groups: the light a elements (Mg, Si, and Ca), and the neutron-capture elements (those heavier than the Fe group, atomic numbers greater than 30). Emphasis is placed on the present state of stellar spectroscopic and atomic transition data.Astronom
Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data
Recent radiative lifetime measurements accurate to +/- 5% using laser-induced
fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have
been combined with new branching fractions measured using a Fourier transform
spectrometer (FTS) to determine transition probabilities for 921 lines of Ce
II. This improved laboratory data set has been used to determine a new solar
photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45
lines), a value in excellent agreement with the recommended meteoritic
abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been
derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052,
CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for
determining the Ce abundance in these five stars, yielding a small statistical
uncertainty of 0.01 dex similar to the Solar result. The relative abundances in
the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun,
matches r-process only model predictions for Solar System material. This
consistent match with small scatter over a wide range of stellar metallicities
lends support to these predictions of elemental fractions. A companion paper
includes an interpretation of these new precision abundance results for Ce as
well as new abundance results and interpretations for Pr, Dy and Tm.Comment: 84 pages, 8 Figures, 14 Tables; To appear in the Astrophysical
Journal Supplemen
Galactic Cosmochronometry from Radioactive Elements in the Spectra of Very Old Metal-Poor Stars
In a short review of neutron-capture elemental abundances in Galactic halo
stars, emphasis is placed on the use of these elements to estimate the age of
the Galactic halo. Two prominent characteristics of neutron-capture elements in
halo stars are their large star-to-star scatter in the overall abundance level
with respect to lighter elements, and the dominance of r-process abundance
patterns at lowest stellar metallicities. The r-process abundance signature
potentially allows the direct determination of the age of the earliest Galactic
halo nucleosynthesis events, but further developments in r-process theory, high
resolution spectroscopy of very metal-poor stars, and in basic atomic data are
needed to narrow the uncertainties in age estimates. Attention is brought to
the importance of accurate transition probabilities in neutron-capture element
cosmochronometry. Recent progress in the transition probabilities of rare earth
elements is discussed, along with suggestions for future work on other species.Comment: 19 pages, 5 figures; To appear in Physica Script
Recommended from our members
Atmospheric fungal nanoparticle bursts.
Aerosol nanoparticles play an important role in the climate system by affecting cloud formation and properties, as well as in human health because of their deep reach into lungs and the circulatory system. Determining nanoparticle sources and composition is a major challenge in assessing their impacts in these areas. The sudden appearance of large numbers of atmospheric nanoparticles is commonly attributed to secondary formation from gas-phase precursors, but in many cases, the evidence for this is equivocal. We report the detection of a mode of fungal fragments with a mobility diameter of roughly 30 nm released in episodic bursts in ambient air over an agricultural area in northern Oklahoma. These events reached concentrations orders of magnitude higher than other reports of biological particles and show similarities to unclarified events reported previously in the Amazon. These particles potentially represent a large source of both cloud-forming ice nuclei and respirable allergens in a variety of ecosystems
Room-temperature ballistic transport in narrow graphene strips
We investigate electron-phonon couplings, scattering rates, and mean free
paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our
calculations for these graphene nanostrips show both the expected similarity
with single-wall carbon nanotubes (SWNTs) and the suppression of the
electron-phonon scattering due to a Dirichlet boundary condition that prohibits
one major backscattering channel present in SWNTs. Low-energy acoustic phonon
scattering is exponentially small at room temperature due to the large phonon
wave vector required for backscattering. We find within our model that the
electron-phonon mean free path is proportional to the width of the nanostrip
and is approximately 70 m for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure
Recommended from our members
Efficiency measurement in the regulated sector : an empirical study of the Massachusetts electric utility industry employing the Williamson Expense Preference Theory in a pooled regression model.
Business AdministrationDoctor of Philosophy (Ph.D.
The mid-infrared spectrum of the transiting exoplanet HD 209458b
We report the spectroscopic detection of mid-infrared emission from the
transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS
instrument, we have determined the spectrum of HD 209458b between 7.46 and
15.25 microns. We have used two independent methods to determine the planet
spectrum, one differential in wavelength and one absolute, and find the results
are in good agreement. Over much of this spectral range, the planet spectrum is
consistent with featureless thermal emission. Between 7.5 and 8.5 microns, we
find evidence for an unidentified spectral feature. If this spectral modulation
is due to absorption, it implies that the dayside vertical temperature profile
of the planetary atmosphere is not entirely isothermal. Using the IRS data, we
have determined the broad-band eclipse depth to be 0.00315 +/- 0.000315,
implying significant redistribution of heat from the dayside to the nightside.
This work required development of improved methods for Spitzer/IRS data
calibration that increase the achievable absolute calibration precision and
dynamic range for observations of bright point sources.Comment: 35 pages, 12 figures, revised version accepted by the Astrophysical
Journa
Minimizing sum of completion times on a single machine with sequence-dependent family setup times
This paper presents a branch-and-bound (B&B) algorithm for minimizing the sum of completion times in a singlemachine scheduling setting with sequence-dependent family setup times. The main feature of the B&B algorithm is a new lower bounding scheme that is based on a networkformulation of the problem. With extensive computational tests, we demonstrate that the B&B algorithm can solve problems with up to 60 jobs and 12 families, where setup and processing times are uniformly distributed in various combinations of the [1,50] and [1,100] ranges
Computing the Loewner driving process of random curves in the half plane
We simulate several models of random curves in the half plane and numerically
compute their stochastic driving process (as given by the Loewner equation).
Our models include models whose scaling limit is the Schramm-Loewner evolution
(SLE) and models for which it is not. We study several tests of whether the
driving process is Brownian motion. We find that just testing the normality of
the process at a fixed time is not effective at determining if the process is
Brownian motion. Tests that involve the independence of the increments of
Brownian motion are much more effective. We also study the zipper algorithm for
numerically computing the driving function of a simple curve. We give an
implementation of this algorithm which runs in a time O(N^1.35) rather than the
usual O(N^2), where N is the number of points on the curve.Comment: 20 pages, 4 figures. Changes to second version: added new paragraph
to conclusion section; improved figures cosmeticall
- …