
UNCORRECTED P
ROOF

Minimizing sum of completion times on a single
machine with sequence-dependent family setup
times
S Karabatı1* and C Akkan2

1Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, Turkey; 2Sabancı University, Orhanlı, Tuzla, İstanbul,
Turkey

This paper presents a branch-and-bound (B&B) algorithm for minimizing the sum of completion times in a single-
machine scheduling setting with sequence-dependent family setup times. The main feature of the B&B algorithm is a
new lower bounding scheme that is based on a network formulation of the problem. With extensive computational tests,
we demonstrate that the B&B algorithm can solve problems with up to 60 jobs and 12 families, where setup and
processing times are uniformly distributed in various combinations of the [1,50] and [1,100] ranges.
Journal of the Operational Research Society (2005) 0, 000–000. doi:10.1057/palgrave.jors.2601989

Keywords: single machine scheduling; sum of completion times; family setups; branch-and-bound; Lagrangean relaxation

Introduction

Setup times are an integral part of manufacturing opera-

tions. In a typical manufacturing operation, a setup time is

incurred when jobs that have different processing require-

ments, such as the tooling requirement, are processed on the

same resource. When jobs can be clustered into groups based

on the similarity of their processing requirements, sequen-

cing decisions become important in terms of achieving the

associated efficiency gains.1

In this paper, we address the single-machine scheduling

problem where jobs can be grouped into families. If the

sequence requires a switch from a job in a certain family to a

job in a different family, then a setup (whose duration

depends on both family types) may be incurred. Rolling

operations in steel making,2 machine re-tooling,3 production

of plastics with colour groups,4 aircraft landing sequencing,5

production scheduling,6 and PCB manufacturing7 are some

of the practical applications where sequence-dependent setup

times are observed.

We specifically consider the problem where n jobs are

grouped into mutually exclusive and collectively exhaustive

sets. Each set of jobs is referred to as a family.J denotes the

set of jobs andJ(k) denotes the set of jobs whose family is k,

k¼ 1, 2,y,K, where K denotes the number of families.

There are nk jobs in J(k), hence
P

k¼ 1
k nk¼ n. Job j has a

processing time pj, j¼ 1, 2,y, n, and all jobs are available at

time zero. If the sequence requires a switch from a job in

Family k to a job in Family l, then a setup time of sk,l units is

incurred, where sk,l need not be equal to sl,k. By definition

sk,k equals 0, k¼ 1, 2,y,K, and s0,k, k¼ 1, 2,y,K, denotes

the setup time required when a job that belongs to Family k

is sequenced in the first position in a sequence. The objective

is the minimization of the sum of the completion times of the

jobs, or
P

j¼ 1
n Cj, where Cj is the completion time Job j.

Based on the classification scheme of Lawler et al,8 the

problem we address in this paper is denoted by 1/sik/
P

jCj.

Rinnooy Kan9 has shown that the Directed Hamiltonian

Path problem, which is NP-complete, can be reduced to a

special case of the 1/sik/
P

jCj problem. Ahn and Hyun2

present a O(K2nK) dynamic programming solution proce-

dure for the 1/sik/
P

jCj problem. From a theoretical view-

point, Ahn and Hyun’s2 solution procedure indicates that

the problem is solvable in polynomial time for a fixed value

of K. However, as stated in Ahn and Hyun,2 the

implementation of the dynamic program becomes intract-

able even with a moderate number of families. Ahn and

Hyun,2 and Gupta10 present heuristic solution procedures

for the 1/sik/
P

jCj problem.

Monma and Potts11 present a dynamic programming

algorithm for the 1/sik/
P

jwjCj problem with a time complex-

ity of OðK2nK2 þKÞ. Ghosh12 studies the same problem and

develops an optimal solution algorithm with a time

complexity of O(K2n2K). Mason and Anderson,3 Crauwels

et al,13 and Dunstall et al14 present B&B algorithms for the

closely related 1/si/
P

jwjCj problem, where setup times are

not sequence dependent. For the same problem, Mason,15

Crauwels et al13,16 develop heuristic solution procedures.

Journal: JORS Disk used OP: Raj Ed: Pouly
Article : ppl_jors_2601989 Pages: 1–10 Despatch Date: 7/4/2005

Gml : Ver 6.0
Template: Ver 1.1.5

*Correspondence: S Karabatı, College of Administrative Sciences and
Economics, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul 34450,
Turkey.
E-mail: skarabati@ku.edu.tr

Journal of the Operational Research Society (2005) 0, 1–10 r 2005 Operational Research Society Ltd. All rights reserved. 0160-5682/05 $30.00

www.palgrave-journals.com/jors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11738097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNCORRECTED P
ROOF

We present a new lower bounding scheme which is based

on a network formulation of the problem in the next section.

The lower bound is obtained by solving an Integer

Programming (IP) formulation of the network problem via

Lagrange relaxation. The size of the IP formulation depends

on the size of the network representation of the scheduling

problem, and we discuss a set of rules that could drastically

reduce the size of the network. Following that section, we

also present a procedure to obtain upper bounds on the

optimal value of the scheduling problem. The upper

bounding procedure uses the solution of the Lagrange

relaxation of the IP formulation to generate feasible

sequences, that is, valid upper bounds.

The B&B algorithm we present in the subsequent section

is a standard implicit enumeration scheme. The search

scheme for the optimal solution is guided by lower and

upper bounds generated through solution of the Lagrange

relaxation of the IP formulation. In the last two sections,

results of the computational experiments with the new

procedure are reported, and concluding remarks are

presented.

Lower bound computation

Our lower-bound computations are based on a minimum-

cost network flow formulation of the problem. Solving the

linear programming relaxation of this formulation would

give us a tight lower bound at the root node of the B&B tree.

However, as discussed later in this section, instead of directly

solving the LP formulation of the problem using the simplex

method, we present a Lagrangean relaxation based approx-

imate solution procedure to obtain lower and upper bounds

on the optimal solution value much more efficiently.

We define a transshipment type network, G(V,A), where

there is a dummy source/sink node, and there are n ‘levels’ of

nodes, one for each position in a sequence. More specifically,

we define V¼
S

p¼ 0
n Vp, where Vp is the set of nodes at level

p. By definition, V0¼ {0} is the dummy source/sink node.

Furthermore, A¼
S

p¼ 0
n Ap, where Ap is the set of arcs that

originate from nodes in Vp and go into nodes in Vpþ 1, for

pon (for p¼ n, all arcs go into V0).

A node vAVp corresponds to a job, denoted by J(v), being

scheduled in position p. Each arc that originates from v

corresponds to a job being the immediate successor of J(v) in

a sequence. Hence at most n arcs could originate from any

node. Furthermore, all arcs in Ap that correspond to Job j go

into the same Node w with J(w)¼ j. Therefore, a path from

source to sink corresponds to a feasible sequence of n jobs

when each job appears exactly once on this path. The family

of Job j is denoted by F(j) and family of the job of Node v is

denoted by F(v), rather than F(J(v)), in order to simplify the

notation. The cost of an arc that goes from Node vAV(p�1)
into a Node wAVp is equal to cv,w¼ (n�pþ l)*(sk,rþ pJ(w)),

where k¼F(v) and l¼F(w). Note that an arc that goes from

Node vAV(p�1) into a Node wAVp corresponds to assigning

J(w) into the pth position of the sequence, after J(v) has been

assigned into the p–1st position, with a total processing time

of sk,lþ pJ(w). Since the processing time of job that is assigned

to the pth position affects the completion times of jobs that

are in positions p, pþ 1,y, n, its overall contribution to the

objective function would be (n�pþ 1)*(sk,lþ pJ(w)).

We illustrate the network representation of the problem

with a 3-job, 2-family (ie, n¼ 3 and K¼ 2) problem with the

following data: J(1)¼ {1, 2}, J(2)¼ {3} (ie, Jobs 1 and 2

belong to first family, and Job 3 belongs to the second

family); s0,1¼ s0,2¼ s1,1¼ s2,2¼ 0, s1,2¼ 3, s2,1¼ 4; p1¼ 3,

p2¼ 4, p3¼ 2. Figure 1 illustrates the network representation

of the problem. The nodes of the network are clustered in

levels as V1¼ {1, 2, 3}, V2¼ {4, 5, 6}, V3¼ {7, 8, 9}. Each

level represents sequencing decisions for a certain position in

the sequence, that is, the nodes in Vi correspond to possible

assignments into the ith position in the sequence. For

example, Node 2 denotes that Job 2 is assigned to the first

position in the sequence, and Node 9 denotes that Job 3 is

assigned to third position in this 3-job problem. A path

between the source and sink nodes corresponds to a

sequence if nodes of Job i, i¼ 1, 2,y, n, are visited only

once. The path 0–1–5–9 corresponds to the feasible sequence

of Job 1-Job 2-Job 3. The path 0–1–5–7, on the other hand,

is not feasible because Job 1 is assigned to both the first and

last positions. With the sequence Job 1-Job 2-Job 3, the

completion times of Jobs 1, 2, and 3 are C1¼ s0,1þ
p1¼ 0þ 3¼ 3, C2¼ s0,1þ p1þ s1,1þ p2¼ 0þ 3þ 0þ 4¼ 7,

and C3¼ s0,1þ p1þ s1,1þ p2þ s1,2þ p3¼ 0þ 3þ 0þ 4þ 3þ
2¼ 12, respectively. Therefore, the sum of completion times

is equal to C1þC2þC3¼ 3(s0,1þ p1)þ 2(s1,1þ p2)þ
(s1,2þ p3). We note that assigning Job i to the first position

affects the completion times of all jobs that are assigned after

itself, along with its own completion time. Therefore the cost

of an arc between Nodes 0 and v in the first level of the

network would be equal to 3(s0,F(v)þ pJ(v)). In general, the

cost of an arc between Nodes w and v, where wAVp�1, and

vAVp, would be (n�pþ 1)(sF(w),F(v)þ pJ(v)).

In this network representation of the problem, the

maximum number of nodes and arcs of the network would

PPL_JORS_2601989

2

3

1

1

2

3

0 8

9

7

1

2

3

5

6

4

1

2

3

0

Level 1 Level 2 Level 3

Figure 1 Network Representation of the First Example.

2 Journal of the Operational Research Society Vol.]], No.]]

UNCORRECTED P
ROOF

be O(n2) and O(n3), respectively. The optimization problem we

need to solve on the network is a shortest path problem with

the additional feasible sequence constraint (the nodes of Job i,

i¼ 1, 2,y,n, should be visited only once), and it would be

difficult to solve large problems with this initial network. In the

subsequent sections we will first formally state the optimization

problem, and then discuss rules that will be employed to

reduce the number of nodes and arcs in the network

The integer programming formulation

Given this network structure, we can formulate the problem

as an integer program, as follows: Let V¼ {0, 1,y,m}

denote the set of nodes, where 0 is the dummy source/sink

node, and A¼ {(v,w): v,wAV} denote the set of arcs. For a

given Node v let P(v)A{0, 1,y,m} denote the level of the

node in the graph. For a given arc (v,w), defining Xv,wA{0,1}
to be the flow on the arc, and cv,w to be its cost (where, by

definition cv,0¼ 0 for all vAVn), we can write the following

formulation:

min
P
v

P
w

cv;wXv;w

s:t:
ð1Þ

P
v
Xv;w ¼

P
v
Xw;v; w 2 V ð2Þ

P
v

P
w:JðwÞ¼j

Xv;wp1; j ¼ 1; 2; . . . ; n ð3Þ

X
v

X0;v ¼ 1; ð4Þ

Xv;w 2 f0; 1g; v;w 2 V ð5Þ

Constraints (2) are the flow conservation constraints at

each node. Constraints (3) require that no more than one arc

corresponding to each job have a unit-flow. Finally,

Constraint (4) requires a unit-flow out of the source/sink

node. Note that, Constraints (3) can be stated as inequalities,

because, due to structure of the network and Constraint (4),

unit-flow will occur on one arc at each level of the network,

and, since no two arcs of the same job can have unit flow,

exactly one arc for each job will have a unit-flow. Clearly,

this is a transshipment model with additional side con-

straints given in (3), and solving the linear programming

relaxation of this formulation would give a lower bound to

our scheduling problem.

Reducing the size of the network

The actual number of nodes and arcs can be drastically

reduced with the intra-family SPT property, which states

that in an optimal schedule Job i in Family k precedes Job j

of the same family if piopj (see Ahn and Hyun2). In this

section, we discuss how the intra-family SPT and other

properties of the problem can be used to reduce the size of

the network representation of the problem.

We will use the following problem instance to demon-

strate the properties we use in reducing the size of the

network: n¼ 7, f¼ 3, J(1)¼ {1, 2, 3, 4, 5}, J(2)¼ {6},

J(3)¼ {7}. pj equals 1, 3, 2, 3, 5, 3, 3 for Jobs 1 through

7, respectively. The setup times are s1,2¼ 1, s1,3¼ 5, s2,1¼ 5,

s2,3¼ 3, s3,1¼ 4, s3,2¼ 2. The network depicted in Figure 2

corresponds to this instance.

The first method of reducing the size of the network is

reducing the number of arcs created out of Node v by

identifying the set of jobs that are ‘definitely’ sequenced up

to Node v (including the sequencing decision that corre-

sponds to Node v), which is denoted by D(v). By definition,

if jAD(v) then Job j appears in all partial sequences ending at

Node v. However, it is important to note that there can exist

a job k that is in all partial sequences ending at Node v but

not in D(v). We let D(v,k)¼ {j: jAD(v) and F(j)¼ k}. Due to

the definition of D(v), no arc corresponding to jobs in D(v)

would be created out of v.

PPL_JORS_2601989

0 2

6 10 15 20

14

16

17

13

19

18

21

1

3

5

7

4

9

8

11

12

1 3 2 4 5 6 7

6

7

1

7

6 6

7

1

3 3

2

7

6 6

7

4

22 24

023

7

Figure 2 Network Representation of the Second Example.

S Karabatı and C Akkan—Minimizing sum of completion times 3

UNCORRECTED P
ROOF

One of the sets used in determining D(v) isA(v), the set of

jobs on all source-to-v paths in the network. Assuming

wAV(pþ 1),

AðwÞ ¼ JðwÞ;
[

v2Vp:ðv;wÞ2Ap

AðvÞ

8<
:

9=
;; whereAð0Þ ¼ ;

We let A(v, k)¼ {j: jAA(v) and F(j)¼ k}.

In the example network, A(12)¼ {1, 3, 6, 7} since

A(5)¼ {1, 6, 7}, A(7)¼ {1, 6, 7} and J(12)¼ 3. Therefore,

A(12, 1)¼ {1, 3}, A(12, 2)¼ {6} and A(12, 3)¼ {7}.

GivenA(v), where vAVp, we determine D(v,k) as follows:

First, by assuming all jobs in A(v) that belong to families

other than k are scheduled up to Node v, we determine the

maximum number of Family k jobs that can be in D(v,k), as

mðv; 242111kÞ ¼ minðjAðvÞj; pÞ � �fðv; kÞ, where �fðv; kÞ ¼
j [l:lak Aðv; lÞj. Owing to Domination Rule 3 discussed

below, |A(v)|Xp, thus mðu; kÞ ¼ p� �fðv; kÞ. Then, we create
the set M(v,k) as follows. If F(v)¼ k the set contains m�1
shortest processing time jobs in A(v,k) excluding J(v),

otherwise it includes—shortest processing time jobs A(v,k).

In Example Network 1, consider Node 20AV5, for which

A(20)¼ {1, 2, 3, 4, 6, 7} and A(20, 1)¼ {1, 2, 3, 4}. Since
�f=ð20; 1Þ ¼ 2, there are 5�2¼ 3 positions available for

Family 1 jobs in the partial sequence up to Node 20. Since

J(20)¼ 7, whose family is 3, M(20, 1)¼ {1, 3, 2}. Note that

Job 2 or 4 could have been in the set since both have the

same processing time of 3, but one is selected arbitrarily.

However, we cannot be sure that Job 2 is going to be

scheduled up to Node 20, as discussed below.

Now let us assume the maximum processing time of jobs

in M(v,k) is pmax. As a result of the intra-family SPT rule,

we know that job(s) of duration pmax will be the last jobs of

Family k in the partial sequence up to Node v. However, if

there exists a job, say Job j0 of Family k not inM(v,k) but in

A(v, l)WJ(v), whose processing time is also pmax, we cannot

know definitely whether the jobs with duration pmax that are

in M(v,k) or Job j0 will actually be scheduled, so we remove

all of them from M(v,k). Then, we set D(v, k)¼M(v, k)S
J(v), if F(v)¼ k or D(v, k)¼M(v, k), otherwise.

Continuing the previous example for Node 20, since Job 4

is in A(20, 1)W{7} but not in M(20, 1), either Job 4 or 2

could be the last job in the partial sequence up to Node 20.

Therefore, we cannot say definitely which one of them will

be scheduled and we update M(20, 1) to be {1, 3}. For

Family 2, since �fð20; 2Þ ¼ 5, it is possible that no jobs of this

family are scheduled up to Node 20, making M(20, 2)¼ |
and D(20, 2)¼ |. Finally, M(20, 3)¼ | as well, since
�fð20; 2123Þ ¼ 5. However,D(20,3)¼ {7} as J(20)¼ 7. Hence,

D(20)¼ {1, 3, 7}.

It is important to note that the set D(20) is actually a

subset of the actual number of definitely scheduled jobs.

Looking at the network in Figure 2 we can clearly see that

there are two partial sequences leading to Node 20 and

which ever is selected, Jobs 1, 2, 3 and 7 would be scheduled.

However, since we determine D(20) using sets not partial

sequences, we can only identify {1, 3, 7}.

Having determined the set D(v), the next step is to

determine the set of candidate jobs, C(v), for which we could

create arcs out of Node v. C(v)¼
S

kA{1
yK
,tC(v, k, t), where

C(v,k, t) is the set of jobs of Family k with processing time t

that are candidates for arcs out of Node v.

Clearly, we would consider creating arcs only for jobs that

are not in D(v). However, a further reduction in the number

of arcs is possible due to the following observation. Let

J(k, t) be the set of jobs of Family k with processing time t.

Given a sequence, if we interchange the positions of two jobs

i, jAJ(k, t) the sum of completion times would remain the

same. So, when we select the jobs of Family k, for which we

are going to create arcs out of Node v, we do the following:

We determine F(v,k, t)¼J(k, t)WD(v,k), the set of jobs of

Family k that have the same processing time t and could be

assigned to an arc out of Node v. Since we would like to

reduce the size of the network as much as possible we would

like to create an arc corresponding to only one of these jobs.

This could only be possible if there is at least one Job j such

that jAF(v,k, t) and jeA(v,k). If there is such a Job j then

we set C(v,k, t)¼ {j}, otherwise we let C(v, k, t)¼F(v,k, t).

We first consider the source node in our example. Recall

that J(1, 3)¼ {2, 4}. Since D(v,k)¼ |, F(0, 1, 3)¼ {2, 4}W
|¼ {2, 4}. This means we can have an arc for both Jobs 2

and 4 out of the source node. However, since A(0,k)¼ |,
creating an arc for one of the two would not eliminate any

optimal solution as the other could be scheduled later.

Hence, C(0, 1, 3)¼ {2}. Since for the other jobs there are no

such alternatives C(0)¼ {1, 2, 3, 5, 6, 7}. Since source node is

a special case, we also consider Node 9. Recall that J(9)¼ 6

and F(9)¼ 2.F(9, 1, 3)¼J(1, 3)WD(9, 1)¼ {2, 4}W{1, 6}¼
{2, 4}. Since A(9, 1)¼ {1, 3, 6, 7}, C(9, 1, 3)¼ {2}, leading to

C(9)¼ {2, 3, 5, 7}.

After C(v) is determined, arcs for some of these jobs may

still be dominated due to the following rules:

Rule 1 For Node vAVp, this rule calculates two values

for each family, namely, Smax(v,k), a lower bound on the

maximum processing time of jobs of Family k that would be

scheduled up to and including Node v and Umin(v,k), an

upper bound on the minimum processing time of jobs of

Family k that would be scheduled after Node v. An arc for

Job j with F(j)¼ k out of Node v is dominated if

pjoSmax(v,k) or pj4Umin(v, k) due to the intra-family SPT

rule.

Smax(v,k) equals the largest duration of jobs in D(v,k).

In calculating Umin(v,k) we assume jobs in A(v,k) are

scheduled before any other job in A(v). Thus, we sort the

jobs inA(v, k)WJ(v), if F(v)¼ k or justA(v, k), otherwise, in

increasing processing time. Denoting this sorted set by

S(v,k), if |S(v,k)|Xp, that means some of the jobs in

S(v,k) will be left unscheduled by Node v. Then, pv,k,[p],

denoting the pth largest processing time job inS(v,k) would

PPL_JORS_2601989

4 Journal of the Operational Research Society Vol.]], No.]]

UNCORRECTED P
ROOF

be the minimum processing time of jobs in A(v,k)

left unscheduled. Jobs in �Aðv; kÞ ¼ JðkÞnAðv; kÞ
are clearly not scheduled by Node v. We let

p024031v;k;½1� ¼ minfpj :j 2 �Aðv; kÞg. Then, if |S(v,k)|Xp,

Umin(v,k)¼min{pv,k,[p],p
0
v,k,[1]}, otherwise, Umin(v,k)¼ p

0

v,k,[1].

For arcs out of the source node, since no jobs are scheduled

yet, Umin(0,k)¼min{pj: jAJ(k)} and Smax(0,k)¼ 0.

Going back to our example, for Node 0, Umin(0, 1)¼ 1

and arcs for Jobs 2, 3, 5 are dominated since their processing

times are larger than 1. For Node 9, S(9, 1)¼ {1, 3} and
�Að9; 1Þ ¼ f2; 4; 5g. Since the position of Node 9 is 3 and

|S(9, 1)|¼ 2, Umin(9, 1)¼ p
0

9,1,[1]¼ 3. On the other hand,

since F(9)¼ 2, D(9, 1)¼ {1}, D(9, 2)¼ {6} and D(9, 3)¼ |,
we have Smax(9, 1)¼ 1, Smax(9, 2)¼ 3, Smax(9, 3)¼ 0.

Rule 2 In creating a network we keep track of the length

of the shortest path to each node. When creating an arc out

of Node v into Node w with cost cv,w, if the sum of the length

of the shortest path to Node v and cv,w exceeds the upper

bound on the sum of completion times, then we do not

create arc (v,w).

Rule 3 When creating an arc out of vAVp for Job j, if

|A(v)
S
{j}|opþ 1, then the arc is dominated since there

must be at least (pþ 1) jobs that could be scheduled up to

and including level pþ 1 of the network.

Rule 4 Let Lj¼ |{k: pk4pj,kAJ(F(j))}| and Sj¼ |{k: pk
opj, kAJ(F(j))}|. When creating an arc for Job j from a

node in position p, the arc is dominated if Lj4n–p–1 or if

Sj4p, due to the intra-family SPT rule.

Lagrangean heuristic

The linear programming relaxation of this network for-

mulation gives a tight initial lower bound and can be solved

in a reasonable time for quite large instances. However, the

structure of the formulation can be exploited to obtain these

bounds much faster by Lagrangean relaxation. Specifically,

when we relax Constraint Set (3), we obtain a shortest

path formulation, and, if optimal Lagrange multipliers are

used, the lower bound obtained by this relaxation would

be equal to the one obtained by the optimum solution

to the linear programming relaxation.17 When we let

l¼ {lj, j¼ 1, 2,y, n} be the Lagrange multiplier vector for

Constraint Set (3), the Lagrangean relaxation formulation

can be written as

ZDðlÞ ¼ min
X
v

X
w

ðCv;w þ ljÞXv;w �
Xn

j¼1
lj ð6Þ

s.t. (2), (4) and (5).

It is well known that quite good but not necessarily

optimal Lagrangean multipliers may be obtained by the

subgradient method. In the subgradient method, given lk as
the vector of the Lagrangean multipliers at iteration k and

ZD(l
k) as the corresponding optimal objective function value

for the Lagrangean relaxation formulation, lkþ 1 is calcu-

lated as follows: lj
kþ 1¼max{0,lj

kþ tk(
P

v,w:J(w)¼ jXv,w�1)},
where tk is the scalar step size and calculated as

tk ¼ akðZ� � ZDðlkÞÞP
j ð1�

P
v;w:JðwÞ¼j Xv;wÞ2

where Z* is the current best upper bound and ak is a scalar.

In our implementation, Z* is initially set to be the upper

bound found by the neighbourhood search heuristic of Ahn

and Hyun.2 If the solution to the Lagrangean relaxation is

feasible for the integer programming formulation (ie, one arc

for each job is selected) than the subgradient algorithm stops

(giving the optimal solution). Otherwise, the number of

iterations is limited to 30n. This has empirically proved to be

sufficient for the Lagrangean lower bound to converge to the

LP lower bound. The scalar ak is initially set to be 2, as

suggested by Fisher.17 Then, akþ 1 is reduced to ak/2 if either

the lower bound has not been improved for n iterations, or

ak has not been changed for 3n iterations. Initially, the

Lagrange multipliers are set to 0.

We use the following heuristic to find an upper bound in

each iteration of the Lagrangean lower bounding procedure.

When the problem is solved with a set of Lagrange

multipliers, a shortest path from the source node to the

sink node is generated. Only one arc is chosen in every level

of the network, therefore one assignment is made to every

position in the sequence. However, because Constraint Set

(3) is relaxed, these assignment may not be feasible, that is,

one job may be assigned to more than one position. Given

this possibly infeasible sequence, we can then determine

‘family-to-position’ assignments, that is, find the family of

job that is assigned to position j, j¼ 1, 2,y, n, in the

sequence, and build a feasible sequence around these

assignments. The heuristic is based on the observation that,

if we use the family-to-position assignments from the

Lagrangean lower bound to obtain a feasible set of family-

to-position assignments, that is, one in which Family k is

assigned to exactly nk positions, then due to the intra-family

SPT rule we can easily create a sequence with minimum cost

for the given family-to-position assignments. Specifically, the

heuristic is designed as follows.

Since a lower bound found at an iteration of the

Lagrangean heuristic is a shortest path through the network,

the shortest path corresponds to a single arc selected at each

position. We let L(p) denote the job of the arc that goes into

a node wAVp that appears in the shortest path. From this

information we can identify P(k)¼ {p:F(L(p))¼ k,

p¼ 1,y, n}, the set of positions for which a job that

belongs to Family k has been selected in the lower bound. If

|P(k)|4nk, then we have positions in excess of the

requirement and E is the set of such families with an excess

number of positions. On the other hand, D is the set of

families for which |P(k)|pnk.

PPL_JORS_2601989

S Karabatı and C Akkan—Minimizing sum of completion times 5

UNCORRECTED P
ROOF

For each family kAE, the heuristic assigns jobs of that

family in order of increasing processing time to the positions

(in increasing order of position index) and stores left-over

positions of the family into a set F. After this is completed

for all families in E, the set F contains all newly available

positions for the families in D. In the next step, the number

of positions that each family kAD needs is calculated as

d(k)¼ nk�|P(k)|. Let f[i] be the ith lowest indexed family in

D. Then, the first d(f[1]) positions in F are inserted into

P(f[1]), the next d(f[2]) positions are inserted into P(f[2]) and

so on, until all positions inF are allocated to some family in

the set of families in D. Since now each family kAD has nk
positions in its set P(k), we can assign its jobs to these

positions in SPT order.

We will demonstrate the Lagrangean heuristic using the

example network provided in Figure 3. The data for this

problem instance are as follows: n¼ 7, f¼ 3,

J(1)¼ {1, 2, 3, 4}, J(2)¼ {5}, J(3)¼ {6, 7}. pj equals 1, 2,

1, 3, 3, 2, 5 for jobs 1 through 7, respectively. The setup times

are s1,2¼ 4, s1,3¼ 5, s2,1¼ 3, s2,3¼ 3, s3,1¼ 3, s3,2¼ 4.

The initial upper bound for this problem is found to be 71

with the sequence 1, 3, 2, 4, 5, 6 and 7. Using Lagrangean

multipliers that are equal to 0, the first lower bound for the

network corresponds to the path through the nodes (jobs) 0,

3 (6), 7 (1), 12 (3), 19 (1), 23 (2), 27 (4), 30 (7), 0 with arc

costs 14, 24, 5, 4, 6, 6, 10 and 0, respectively. The length of

this shortest path is 69. Since all the Lagrangean multipliers

are zero, 69 is the lower bound as well. Since Job 1 is

assigned to two positions and Job 5 is not assigned to any

position, this path does not yield a feasible solution. The

upper bound heuristic picks up the job sequence of this

shortest path to find a feasible sequence as follows: Positions

2, 3, 4, 5 and 6 have job of Family 1, thus

P(1)¼ {2, 3, 4, 5, 6}, whereas, P(2)¼ | and P(3)¼ {1, 7}.

Since n2¼ 14|P(2)|, D¼ {2}. On the other hand, since

n1¼ 4p|P(1)| and n3¼ 2p|P(3)|, we have E¼ {1, 3}.

Hence, first we assign Jobs 1, 3, 2, 4 of Family 1 (in

SPT order) to positions 2, 3, 4, 5, respectively, and insert

position 6 into F. Then we assign Jobs 6, 7 of Family 3 to

positions 1, 7, respectively. Having assigned jobs of all the

families in E, the set F¼ {6} now contains the only

newly available position for the Family 2. Since Family 2

is the only family with deficient number of positions

|F|¼ d(2)¼ 1. So we insert the position in F into P(2)

to obtain P(2)¼ {6}. Then we assign the only job of

Family 2 to this position, leading to the following complete

sequence for the problem: 6, 1, 3, 2, 4, 5, 7. The sum of

completion times for this sequence is 82, so still the

best upper bound is 71. The second iteration of the

Lagrangean heuristic starts with the update of the Lagran-

gean multipliers as follows:

tk ¼ 2ð71� 69Þ
ðð1� 2Þ2 þ ð1� 1Þ2 þ ð1� 1Þ2 þ ð1� 1Þ2 þ ð1� 0Þ2 þ ð1� 1Þ2

¼ 2

leading to l1
1¼max{0, 0þ 2(2�1)}¼ 2, l2

1¼max{0, 0þ 2

(1�1)}¼ 0, l3
1¼max{0, 0þ 2(1�1)}¼ 0, l4

1¼max{0, 0þ 2

(1�1)}¼ 0, l5
1¼max{0, 0þ 2(0�1)}¼ 0, l6

1¼max{0, 0þ 2

(1�1)}¼ 0, l7
1¼max{0, 0þ 2(1�1)}¼ 0. With these new

Lagrangean multipliers, only the costs of the arcs of Job 1

are increased by 2. The shortest path with these costs goes

through the nodes (jobs) 0, 2 (1), 4 (3), 9 (2), 14 (4), 21 (5), 26

(6), 30 (7), 0, with a length of 73. Since sum of the

Lagrangean multipliers is 2, the lower bound is 73�2¼ 71.

Note that the sequence of jobs corresponding to this path

PPL_JORS_2601989

0 2

6

10 15

20

14

16

17

13

19

18

23

22

211

3

5

7

4 9

8

11

12

30

1

5

6

1

6

5

3

7

2

5

6

3 2

6

5

4

1 7

1

3

5

2

6

7

0

25

24

7

4

28

27

26

6

5

4

29

7

Figure 3 Network Representation of the Third Example.

6 Journal of the Operational Research Society Vol.]], No.]]

UNCORRECTED P
ROOF

assigns each job to a unique position, hence it is feasible with

a sum of completion times of 71. Thus, this sequence is

optimal.

The branch-and-bound algorithm

In this section we present a branch-and-bound (B&B)

algorithm to exactly solve the problem. The B&B algorithm

performs its search over the network of the problem

developed in the lower bound computation section. A node

in the B&B tree corresponds to a partial sequence of l jobs

with sl¼ {j1,y, jl}, 1plpn, or a path from the dummy

source/sink node to a certain node of the network at level l

where no two arcs that are on the path belong to the same

job. A lower bound at a node of the B&B tree can be easily

computed by adding the sum of completion times value of

the partial sequence to the objective function value

(Equation (6)) of the Lagrangean relaxation formulation

starting from the last node of the path that corresponds to

the partial sequence. Note that, the length of the shortest

path from the last node of the partial sequence to the

dummy source/sink node minus the sum of the Lagrange

multipliers of the jobs that are not in the partial sequence

would give the desired objective function value.

The B&B algorithm imports the network structure and

shortest path values of the nodes from the initial lower

bound computation stage, and starts with an initial list of

single-job sequences that correspond to nodes in the first

level of the network. The partial sequences in the initial list

are sorted in decreasing order of lower bound values. The

branching scheme removes the first partial sequence from

the list and expands it following the arcs that emanate from

the node that corresponds to the last job in the partial

sequence. An arc can be a candidate for expanding the

partial sequence only if the job that corresponds to the end

node of the arc is not in the partial sequence. If the lower

bound of a newly created partial sequence is smaller than

the current upper bound, the partial sequence is inserted to

the list of partial sequences. The insertion process is

designed as follows: until the one-millionth partial sequence

is generated, the first n� 100 partial sequences are sorted in

decreasing order of lower bound values, and if a partial

sequence’s lower bound value is greater that of the partial

sequence in the (n� 100)th position in the list, it is inserted

in position n� 100þ 1. After the one-millionth partial

sequence is generated, only the first 10 partial sequences

are sorted in decreasing of lower bound values, and if the

lower bound value of a newly generated partial sequence is

greater than that of the 10th partial sequence in the list, it is

inserted in the 11th position.

The B&B algorithm uses complete sequences that

are generated during the search to update the upper

bound value. The initial upper bound of the B&B algorithm

is the sum of completion times value of the sequence

generated by the Lagrangean Heuristic. At other nodes

of the B&B tree, complete sequences are generated by using

a modified version of the Lagrangean heuristic described

earlier. The modified version of the heuristic accounts for

the jobs that are already assigned to a position in the

partial sequence.

In order to further improve the upper bound quality, we

employ a block-insertion heuristic. This heuristic is used at

the root node of the B&B tree, and when a new complete

sequence that improves the current upper bound is gene-

rated during the search. The block-insertion heuristic

can be outlined as follows: A complete sequence can be

viewed as collection of blocks where each block refers

to a group of jobs that are contiguously sequenced

and belong to the same family. The block-insertion heuristic

iteratively divides a block of k jobs into two sub-blocks:

first l jobs and remaining k�l jobs where l¼ 1, 2,y,k�1.
Let p be the position of the first job of the block in the

original sequence. The first block of l jobs is then removed

from the sequence and then re-inserted to the sequence

starting from position i, i¼ 1, 2,y, p�1, or from position i,

i¼ pþ kþ 1, pþ kþ 2,y, n, in the sequence. If iop, the

jobs that are originally sequenced in positions i,

iþ 1,y, p�1, are right-shifted by l positions, and if

i4pþ kþ 1, the jobs that are originally sequenced in

positions pþ l, pþ lþ 1,y, i, are left-shifted by l positions

to make up room for the block that is going to be inserted.

After the block is inserted in its new position, the sequence

is viewed as blocks of contiguous positions that belong

to different families, and the jobs of each family are

re-assigned to positions that belong to that family using

the intra-family SPT rule. The worst-case time complexity

of a block-insertion operation is equivalent to deter-

mining the sum of completion times value of n sequences,

and the maximum number of sub-blocks in a given

sequence is equal to n. The sum of completion times

value of a sequence can be determined in O(n) time,

therefore, for a given initial sequence, the time complexity

of the heuristic is O(n3). In the current implementation of

the block-insertion heuristic, if the sum of completion times

value of the initial sequence is improved with a block-

insertion operation, the heuristic is re-started with the newly

formed sequence.

Computational results

In this section, we present a computational analysis of the

B&B algorithm’s performance on randomly generated

problem instances. The problem instances are generated

using three values of number of families (K¼ 8, 12 and 16),

two values of number of jobs (n¼ 50 and 60), two values for

the relative sizes of the families ðmax1pkpK nk=

min1pkpK nk � 1 that is, approximately equal number of

jobs per family, and max1pkpK nk=min1pkpK nk 2 ½2; 3�Þ;

PPL_JORS_2601989

S Karabatı and C Akkan—Minimizing sum of completion times 7

UNCORRECTED PROOF

PP
L_JO

R
S
_2601989

Table 1 Computational results: 50 job problems

CPU Times

LB quality UB quality Network size Network B&B Total

K
maxknk
minknk pj sl,k

Average
(%)

Maximum
(%)

Average
(%)

Maximum
(%)

Average
no of
Nodes

Average no
of Arcs

Average no
of B&B
Nodes Average Average Average Maximum

8 E1 [1,50] [1,50] 0.14 0.87 0.18 2.48 2240.00 9236.80 20 193.90 21.51 0.78 22.29 46.29
[1,100] 0.51 3.40 0.58 3.75 2239.92 9250.90 289 983.68 23.24 20.51 43.75 501.49

[1,100] [1,50] 0.30 1.40 0.55 3.64 2238.30 9478.54 153 457.12 28.47 12.56 41.03 236.28
[1,100] 0.25 2.06 0.29 2.12 2238.20 9490.94 80 359.46 27.56 5.54 33.10 119.94

A[2,3] [1,50] [1,50] 0.22 1.41 0.21 3.52 2221.16 9837.40 34 620.50 24.41 2.52 26.92 121.98
[1,100] 0.47 4.31 0.70 5.03 2220.84 9838.12 430 824.82 26.07 20.09 46.16 547.71

[1,100] [1,50] 0.19 1.07 0.46 2.76 2219.92 10 048.92 109 434.26 30.53 8.07 38.60 233.04
[1,100] 0.25 1.64 0.35 2.34 2220.08 10 054.94 40 930.42 23.48 1.77 25.24 75.21

12 E1 [1,50] [1,50] 0.45 1.32 1.03 4.01 2342.56 6379.60 293 747.02 37.80 27.38 65.17 595.20
[1,100] 0.71 2.61 1.76 9.48 2342.44 6381.60 959 779.98 35.19 76.32 111.52 883.82

[1,100] [1,50] 0.18 0.90 0.65 3.77 2342.04 6433.04 68 678.02 36.92 5.52 42.44 167.98
[1,100] 0.38 1.24 1.04 5.46 2341.88 6458.88 233 657.82 37.34 22.44 59.78 443.81

A[2,3] [1,50] [1,50] 0.40 1.90 0.93 4.61 2315.64 7237.22 423 852.46 35.25 25.40 60.64 662.15
[1,100] 0.64 3.37 1.07 5.16 2316.38 7237.20 1 861 099.78 32.82 85.02 117.84 2791.51

[1,100] [1,50] 0.19 0.79 0.62 3.81 2314.64 7384.82 73 883.00 34.61 5.97 40.58 117.20
[1,100] 0.35 1.57 0.90 5.51 2315.00 7387.42 222 814.14 35.14 18.15 53.29 446.52

16 E1 [1,50] [1,50] 0.38 1.42 1.33 6.14 2393.90 4665.52 1 170 000.10 40.73 71.91 112.63 1573.93
[1,100] 0.66 2.19 2.48 11.57 2394.00 4660.34 1 853 161.38 41.17 93.70 134.87 1537.34

[1,100] [1,50] 0.29 1.00 1.41 4.67 2393.36 4730.00 216 217.00 40.95 25.07 66.02 608.81
[1,100] 0.53 1.98 1.82 4.61 2393.68 4691.44 4 808 053.10 43.27 233.45 276.72 7753.02

A[2,3] [1,50] [1,50] 0.45 1.79 1.81 7.65 2384.44 5007.02 448 250.08 40.67 40.77 81.44 513.42
[1,100] 0.58 1.99 2.30 12.31 2384.36 4999.26 884 089.10 40.20 49.06 89.26 1101.31

[1,100] [1,50] 0.24 0.90 1.27 4.75 2384.16 5065.02 781 002.30 40.48 48.72 89.20 1184.42
[1,100] 0.24 0.90 1.27 4.75 2384.16 5065.02 781 002.30 40.48 50.50 90.98 1197.47

8
Journalofthe

O
perationalResearch

Society
Vol.

]],N
o.

]]

UNCORRECTED PROOF

PP
L_JO

R
S
_2601989

Table 2 Computational results: 60 job problems

CPU Times

LB quality UB quality Network size Network B&B Total

K
maxknk
minknk pj sl,k

Average
(%)

Maximum
(%)

Average
(%)

Maximum
(%)

Average
no of
Nodes

Average
no of
Arcs

Average
no of

B&B Nodes Average Average Average Maximum

8 E1 [1,50] [1,50] 0.26 1.66 0.32 2.83 3213.20 15 951.68 323 440.58 62.12 43.42 105.55 940.92
[1,100] 0.39 2.54 0.31 3.16 3212.88 16 020.76 1 079 491.48 52.69 65.86 118.55 2408.98

[1,100] [1,50] 0.17 1.10 0.39 2.48 3211.06 16 341.36 458 547.54 62.25 38.26 100.51 1702.32
[1,100] 0.28 1.84 0.26 1.89 3210.54 16 444.40 556 697.34 57.59 38.70 96.29 1424.65

A[2,3] [1,50] [1,50] 0.20 1.34 0.22 2.08 3173.12 17 308.88 121 929.82 53.16 12.31 65.47 369.73
[1,100] 0.43 2.90 0.60 6.09 3174.22 17 294.56 747 396.28 52.01 52.09 104.10 1709.48

[1,100] [1,50] 0.11 1.32 0.18 1.49 3169.58 17 841.38 85 097.38 51.19 14.31 65.50 624.97
[1,100] 0.23 2.01 0.32 3.57 3171.94 17 691.16 621 013.76 49.78 43.32 93.10 1730.73

12 E1 [1,50] [1,50] 0.40 1.42 1.27 4.86 3363.46 11 049.62 604 319.06 78.27 69.01 147.28 791.92
[1,100] 0.49 2.77 0.92 6.12 3363.72 11 018.74 2 511 797.60 69.36 179.81 249.17 2876.39

[1,100] [1,50] 0.27 1.15 0.76 2.81 3362.44 11 198.82 1 678 834.80 79.04 143.69 222.73 3039.69
[1,100] 0.33 1.19 0.83 3.89 3362.18 11 236.60 777 789.00 82.35 84.19 166.54 1081.64

A[2,3] [1,50] [1,50] 0.31 1.28 0.79 3.67 3333.46 12 279.12 493 149.66 74.93 60.63 135.56 1165.97
[1,100] 0.41 2.49 1.01 6.04 3335.90 12 182.26 4 635 150.48 69.88 277.62 347.50 6685.11

[1,100] [1,50] 0.24 0.94 0.53 2.86 3332.28 12 540.80 374 905.50 77.89 44.12 122.01 668.41
[1,100] 0.34 0.81 1.30 5.35 3334.00 12 450.44 332 245.58 82.74 39.52 122.25 510.80

16 E1 [1,50] [1,50] 0.34 0.94 1.46 5.60 3434.68 8 368.22 1 813 900.56 86.26 180.28 266.53 2970.86
[1,100] 0.61 2.48 2.08 8.66 3434.92 8 324.66 4 112 097.02 90.57 355.71 446.28 4589.66

[1,100] [1,50] 0.33 1.35 1.61 4.10 3433.94 8 470.02 4 446 052.30 90.14 387.24 477.37 7865.28
[1,100] 0.30 1.71 1.55 7.12 3433.84 8 486.24 2 111 891.08 89.03 160.98 250.01 5305.20

A[2,3] [1,50] [1,50] 0.51 2.12 2.22 7.13 3431.54 8 498.22 22 373 264.22 89.52 1 152.69 1 242.20 24 853.34
[1,100] 0.45 1.47 1.14 6.88 3431.72 8 504.08 2 190 105.24 84.12 134.62 218.73 1331.27

[1,100] [1,50] 0.27 0.69 1.37 4.14 3431.30 8 563.96 687 307.74 86.85 67.87 154.72 1573.84
[1,100] 0.44 1.65 1.45 7.39 3431.14 8 586.36 9 165 105.26 87.64 470.00 557.64 9150.58

S
Karabatıand

C
Akkan—

M
inim

izing
sum

ofcom
pletion

tim
es

9

UNCORRECTED P
ROOF

two discrete uniform distributions for setup times

(sl,kBDU[1, 50], and sl,kBDU[1, 100]), and two discrete

uniform distributions for processing times (pjBDU[1, 50],

and pjBDU[1, 100]).

The algorithms were coded in C, and the test instances

were solved on a SUN/SOLARIS with a 2.4GHz processor

and 5GB RAM.

The detailed performance of the B&B algorithm is

reported in Tables 1 and 2. For each number of jobs,

number of families, relative sizes of families, setup

and processing times distributions combination, a set of

50 problems are solved optimally. In both tables, we

report the quality of the lower and upper bounds at the

initial node of the search tree. The quality of upper

and lower bounds is computed as follows: Let LB, H

and O be the lower bound, heuristic solution, and optimal

values, respectively. Then the lower (upper) bound quality is

computed as

O� LB

O
�100 H�O

O
�100

� �

We also report the average number of nodes and arcs of the

networks that are used to generate the initial lower bound

values. The network sizes reported in both tables are

reasonably small for the number of jobs and families

considered in the computational analysis. The average

CPU time to generate the network and compute the lower

bound value at the initial node is around 40 (80) s in 50 (60)

job problems.

As expected, we clearly see that the most important

parameters that affect the difficulty of solving these

problems are the number of families and the number of

jobs. Interestingly, we observe that the performance of the

algorithm is not significantly affected by the remaining three

parameters.

Overall, we see that the performance of the B&B

algorithm is quite good, and only when the number of

jobs is 60 and the number of families is 16 do we come

across instances where the algorithm struggles a lot to

find the optimal solution. For these difficult instances,

when the computational burden of the B&B algorithm

starts to become excessive, the heuristic gives quite

good upper bounds that are on the average within 1.6% of

the optimum.

Concluding remarks

We have presented a B&B algorithm for minimizing the sum

of completion times in a single-machine scheduling setting

with sequence-dependent family setup times. The B&B

algorithm employs a new lower bounding scheme that

is based on a network formulation of the problem. The

network representation of the problem can be considered

as a natural extension of the dynamic programming

approaches to the problem. The main contribution of our

work is in the development of network reduction rules and

lower and upper bounding procedures that have enabled us

to efficiently solve relatively large-size problems. With

extensive computational tests, we demonstrate that the

B&B algorithm can solve problems with up to 60 jobs and

12 families, where setup and processing times are uniformly

distributed in various combinations of the [1,50] and [1,100]

ranges.

References

1 Webster S and Baker KR (1995). Scheduling groups of jobs on a
single machine. Opns Res 43: 692–703.

2 Ahn BH and Hyun JH (1990). Single facility multi-class job
scheduling. Comput Opns Res 17: 265–272.

3 Mason AJ and Anderson EJ (1991). Minimizing flow time on a
single machine with job classes and setup times. Naval Res
Logist 38: 333–350.

4 Potts CN and Van Wassenhove LN (1992). Integrating
scheduling with batching and lot-sizing: a review of algorithms
and complexity. J Opl Res Soc 43: 395–406.

5 Ernst AT, Krishnamoorthy M and Storer RH (1999). Heuristic
and exact algorithms for scheduling aircraft landings. Networks
34: 229–241.

6 Moss S, Dale C and Brame G (2000). Sequence-
dependent scheduling at Baxter International. INTERFACES
30: 70–80.

7 Schaller EJ, Gupta JND and Vakharia AJ (2000). Scheduling a
flowline manufacturing cell with sequence dependent family
setup times. Eur J Opl Res 125: 324–339.

8 Lawler EL, Lenstra JK, Rinnooy Kan AHG and Shmoys DB
(1993). Sequencing and scheduling: algorithms and complexity.
In: Handbooks in Operations Research and Management Science
Vol 4. Elsevier: Amsterdam, 1993.

9 Rinnooy Kan AHG (1976). Machine Scheduling Problems:
Classification; Complexity and Computations. Nijhoff: The
Hague.

10 Gupta JND (1988). Single facility scheduling with multiple job
classes. Eur J Opl Res 33: 42–45.

11 Monma CL and Potts CN (1989). On the complexity of
scheduling with batch setup times. Opns Res 37: 798–804.

12 Ghosh JB (1994). Batch scheduling to minimize total comple-
tion time. Opns Res Lett 16: 271–275.

13 Crauwels HAJ, Hariri AMA, Potts CN and Van Wassenhove
LN (1998). Branch and bound algorithms for single machine
scheduling with batch setup times to minimize total weighted
completion time. Ann Opns Res 83: 59–76.

14 Dunstall S, Wirth A and Baker K (2000). Lower bounds and
algorithms for flowtime minimization on a single machine with
set-up times. J Scheduling 3: 51–69.

15 Mason AJ (1992). Genetic Algorithms and Scheduling Problems.
PhD thesis, University of Cambridge.

16 Crauwels HAJ, Potts CN and Van Wassenhove LN (1997).
Local search heuristics for single machine scheduling with batch
setup times to minimize total weighted completion time. Ann
Opns Res 70: 261–279.

17 Fisher ML (1985). An applications oriented guide to lagrangean
relaxation. Interfaces 15: 10–21.

PPL_JORS_2601989

Q1

Q2

10 Journal of the Operational Research Society Vol.]], No.]]

