199 research outputs found

    Live Pups from Evaporatively Dried Mouse Sperm Stored at Ambient Temperature for up to 2 Years

    Get PDF
    The purpose of this study is to develop a mouse sperm preservation method based on evaporative drying. Mouse sperm were evaporatively dried and stored at 4°C and ambient temperature for 3 months to 2 years. Upon rehydration, a single sperm was injected into a mature oocyte to develop into a blastocyst after culture or a live birth after embryo transfer to a recipient female. For the samples stored at 4°C for 3, 6, 12, 18, and 24 months, the blastocyst formation rate was 61.5%, 49.1%, 31.5%, 32.2%, and 41.4%, respectively. The blastocyst rate for those stored at ambient temperature (∼22°C) for 3, 6, 12, and 18 months was 57.8%, 36.2%, 33.6%, and 34.4%, respectively. Fifteen, eight and three live pups were produced from sperm stored at room temperature for 12, 18, and 24 months, respectively. This is the first report of live offspring produced from dried mouse sperm stored at ambient temperature for up to 2 years. Based on these results, we suggest that evaporative drying is a potentially useful method for the routine preservation of mouse sperm

    Clock and induction model for somitogenesis

    Get PDF
    After many years of research, somitogenesis is still one of the major unresolved problems in developmental biology. Recent experimental findings show a novel type of pattern formation in which a signal sweeps along the presomitic mesoderm and narrows simultaneously as a new somite is formed. The signal then residues in the posterior half of the new somite, and another wave begins to sweep up from the caudal end. This behaviour is not easily explained by the existing theoretical models. We present a new model for somitogenesis that can account for this behaviour and is consistent with previous experimental observations. Dev Den;217:415-420. Β© 2000 Wiley-Liss, Inc

    Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

    Get PDF
    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new β€œgiant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation

    DNA Methyltransferase Is Actively Retained in the Cytoplasm during Early Development

    Get PDF
    The overall DNA methylation level sharply decreases from the zygote to the blastocyst stage despite the presence of high levels of DNA methyltransferase (Dnmt1). Surprisingly, the enzyme is localized in the cytoplasm of early embryos despite the presence of several functional nuclear localization signals. We mapped a region in the NH2-terminal, regulatory domain of Dnmt1 that is necessary and sufficient for cytoplasmic retention during early development. Altogether, our results suggest that Dnmt1 is actively retained in the cytoplasm, which prevents binding to its DNA substrate in the nucleus and thereby contributes to the erasure of gamete-specific epigenetic information during early mammalian development

    An in vivo culture system for human embryos using an encapsulation technology: a pilot study

    Get PDF
    ACKGROUND: Animal studies have demonstrated better embryo development in vivo than in vitro. This pilot study tested the feasibility of using a novel in utero culture system (IUCS) to obtain normal human fertilization and embryo development. METHODS: The IUCS device comprised a perforated silicone hollow tube. The study included 13 patients (<36 years) undergoing a first intracytoplasmic sperm injection (ICSI) treatment and 167 metaphase II oocytes in three groups. In Group 1, 1-2 h after ICSI, sibling oocytes were assigned to IUCS or conventional in vitro culture. The device was retrieved on Day 1, and all zygotes were cultured in vitro till Day 5. In Group 2, fertilized oocytes were assigned on Day 1, embryos retrieved on Day 3 and all embryos cultured till Day 5. In Group 3, after Day 0 assignment, embryos were retrieved on Day 3 for blastomere biopsy and fluorescence in situ hybridization (FISH) and cultured until Day 5. The highest quality blastocysts were transferred on Day 5. RESULTS: Fertilization and embryo development were comparable in the in vitro and IUCS arms, with a tendency towards better embryo quality in the IUCS. FISH analysis in Group 3 revealed more normal embryos using the IUCS (P = 0.049). Three clinical pregnancies and live births were obtained: two from the IUCS arm and one from the in vitro arm. CONCLUSIONS: Our pilot study shows that this new IUCS appears to be feasible and safe, supporting normal fertilization, embryo development and normal chromosomal segregation. Furthermore, live births are possible after the transient presence of a silicone device in the uterus. Clinicaltrials.gov: NCT00480103

    Preservation of Mouse Sperm by Convective Drying and Storing in 3-O-Methyl-D-Glucose

    Get PDF
    With the fast advancement in the genetics and bio-medical fields, the vast number of valuable transgenic and rare genetic mouse models need to be preserved. Preservation of mouse sperm by convective drying and subsequent storing at above freezing temperatures could dramatically reduce the cost and facilitate shipping. Mouse sperm were convectively dried under nitrogen gas in the Na-EGTA solution containing 100 mmol/L 3-O-methyl-D-glucose and stored in LiCl sorption jars (Relative Humidity, RH, 12%) at 4Β°C and 22Β°C for up to one year. The functionality of these sperm samples after storage was tested by intracytoplasmic injection into mouse oocytes. The percentages of blastocysts produced from sperm stored at 4Β°C for 1, 2, 3, 6, and 12 months were 62.6%, 53.4%, 39.6%, 33.3%, and 30.4%, respectively, while those stored at 22Β°C for 1, 2, and 3 months were 28.8%, 26.6%, and 12.2%, respectively. Transfer of 38 two- to four-cell embryos from sperm stored at 4Β°C for 1 year produced two live pups while 59 two- to four-cell embryos from sperm stored at 22Β°C for 3 months also produced two live pups. Although all the pups looked healthy at 3 weeks of age, normality of offspring produced using convectively dried sperm needs further investigation. The percentages of blastocyst from sperm stored in the higher relative humidity conditions of NaBr and MgCl2 jars and driest condition of P2O5 jars at 4Β°C and 22Β°C were all lower. A simple method of mouse sperm preservation is demonstrated. Three-O-methyl-D-glucose, a metabolically inactive derivative of glucose, offers significant protection for dried mouse sperm at above freezing temperatures without the need for poration of cell membrane

    Dynamic Replacement of Histone H3 Variants Reprograms Epigenetic Marks in Early Mouse Embryos

    Get PDF
    Upon fertilization, reprogramming of gene expression is required for embryo development. This step is marked by DNA demethylation and changes in histone variant composition. However, little is known about the molecular mechanisms causing these changes and their impact on histone modifications. We examined the global deposition of the DNA replication-dependent histone H3.1 and H3.2 variants and the DNA replication-independent H3.3 variant after fertilization in mice. We showed that H3.3, a euchromatic marker of gene activity, transiently disappears from the maternal genome, suggesting erasure of the oocyte-specific modifications carried by H3.3. After fertilization, H3.2 is incorporated into the transcriptionally silent heterochromatin, whereas H3.1 and H3.3 occupy unusual heterochromatic and euchromatin locations, respectively. After the two-cell stage, H3.1 and H3.3 variants resume their usual respective locations on heterochromatin and euchromatin. Preventing the incorporation of H3.1 and H3.2 by knockdown of the histone chaperone CAF-1 induces a reciprocal increase in H3.3 deposition and impairs heterochromatin formation. We propose that the deposition of different H3 variants influences the functional organization of chromatin. Taken together, these findings suggest that dynamic changes in the deposition of H3 variants are critical for chromatin reorganization during epigenetic reprogramming

    Nlrp2, a Maternal Effect Gene Required for Early Embryonic Development in the Mouse

    Get PDF
    Maternal effect genes encode proteins that are produced during oogenesis and play an essential role during early embryogenesis. Genetic ablation of such genes in oocytes can result in female subfertility or infertility. Here we report a newly identified maternal effect gene, Nlrp2, which plays a role in early embryogenesis in the mouse. Nlrp2 mRNAs and their proteins (∼118 KDa) are expressed in oocytes and granulosa cells during folliculogenesis. The transcripts show a striking decline in early preimplantation embryos before zygotic genome activation, but the proteins remain present through to the blastocyst stage. Immunogold electron microscopy revealed that the NLRP2 protein is located in the cytoplasm, nucleus and close to nuclear pores in the oocytes, as well as in the surrounding granulosa cells. Using RNA interference, we knocked down Nlrp2 transcription specifically in mouse germinal vesicle oocytes. The knockdown oocytes could progress through the metaphase of meiosis I and emit the first polar body. However, the development of parthenogenetic embryos derived from Nlrp2 knockdown oocytes mainly blocked at the 2-cell stage. The maternal depletion of Nlrp2 in zygotes led to early embryonic arrest. In addition, overexpression of Nlrp2 in zygotes appears to lead to normal development, but increases blastomere apoptosis in blastocysts. These results provide the first evidence that Nlrp2 is a member of the mammalian maternal effect genes and required for early embryonic development in the mouse
    • …
    corecore