10 research outputs found

    Magnetic Structure and Magnetoelectric Coupling in Bulk and Thin Film FeVO\u3csub\u3e4

    Get PDF
    We have investigated the magnetoelectric and magnetodielectric response in FeVO4, which exhibits a change in magnetic structure coincident with ferroelectric ordering at TN2≈15 K. Using symmetry considerations, we construct a model for the possible magnetoelectric coupling in this system and present a discussion of the allowed spin structures in FeVO4. Based on this model, in which the spontaneous polarization is caused by a trilinear spin-phonon interaction, we experimentally explore the magnetoelectric coupling in FeVO4 thin films through measurements of the electric field-induced shift of the multiferroic phase transition temperature, which exhibits an increase of 0.25 K in an applied field of 4 MV/m. The strong spin-charge coupling in FeVO4 is also reflected in the significant magnetodielectric shift, which is present in the paramagnetic phase due to a quartic spin-phonon interaction and shows a marked enhancement with the onset of magnetic order which we attribute to the trilinear spin-phonon interaction. We observe a clear magnetic field-induced dielectric anomaly at lower temperatures, distinct from the sharp peak associated with the multiferroic transition, which we tentatively assign to a spin-reorientation crossover. We also present a magnetoelectric phase diagram for FeVO4

    Electric-Field Control of a Magnetic Phase Transition in Ni\u3csub\u3e3\u3c/sub\u3eV\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e8\u3c/sub\u3e

    Get PDF
    We report on the electric-field tuning of a magnetic phase transition temperature (TL) in multiferroic Ni3V2O8 thin films. The simultaneous magnetic and ferroelectric transition in Ni3V2O8 exhibits a clear dielectric anomaly; we monitored TL under applied electric and magnetic fields using dielectric measurements. The transition temperature increases by 0.2 K±0.05 K when the sample is biased approximately 25 MV/m compared to zero bias. This electric-field control of the magnetic transition can be qualitatively understood using a mean-field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization. The shape of the electric field-temperature phase boundary is consistent with the proper order parameter for the multiferroic phase in Ni3V2O8 being a linear combination of the magnetic and ferroelectric correlation functions

    Magnetically Driven Ferroelectric Order in Ni\u3csub\u3e3\u3c/sub\u3eV\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e8\u3c/sub\u3e

    Get PDF
    We show that long-range ferroelectric and incommensurate magnetic order appear simultaneously in a single phase transition in Ni3V2O8. The temperature and magnetic-field dependence of the spontaneous polarization show a strong coupling between magnetic and ferroelectric orders. We determine the magnetic symmetry using Landau theory for continuous phase transitions, which shows that the spin structure alone can break spatial inversion symmetry leading to ferroelectric order. This phenomenological theory explains our experimental observation that the spontaneous polarization is restricted to lie along the crystal b axis and predicts that the magnitude should be proportional to a magnetic order parameter

    Complex Magnetic Order in the Kagomé Staircase Compound Co\u3csub\u3e3\u3c/sub\u3eV\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e8\u3c/sub\u3e

    Get PDF
    Co3V2O8 (CVO) has a different type of geometrically frustrated magnetic lattice, a kagomé staircase, where the full frustration of a conventional kagomé lattice is partially relieved. The crystal structure consists of two inequivalent (magnetic) Co sites, one-dimensional chains of Co(2) spine sites, linked by Co(1) cross-tie sites. Neutron powder diffraction has been used to solve the basic magnetic and crystal structures of this system, while polarized and unpolarized single crystal diffraction measurements have been used to reveal a rich variety of incommensurate phases, interspersed with lock-in transitions to commensurate phases. CVO initially orders magnetically at 11.3K into an incommensurate, transversely polarized, spin density wave state, with wave vector k=(0,δ,0) with δ=0.55 and the spin direction along the a axis. δ is found to decrease monotonically with decreasing temperature and then locks into a commensurate antiferromagnetic structure with δ=1/2 for 6.9\u3cT\u3c8.6K. In this phase, there is a ferromagnetic layer where the spine site and cross-tie sites have ordered moments of 1.39μB and 1.17μB, respectively, and an antiferromagnetic layer where the spine-site has an ordered moment of 2.55μB, while the cross-tie sites are fully frustrated and have no observable ordered moment. Below 6.9K, the magnetic structure becomes incommensurate again, and the presence of higher-order satellite peaks indicates that the magnetic structure deviates from a simple sinusoid. δ continues to decrease with decreasing temperature and locks in again at δ=1/3 over a narrow temperature range (6.2\u3cT\u3c6.5K). The system then undergoes a strongly first-order transition to the ferromagnetic ground state (δ=0) at Tc=6.2K. The ferromagnetism partially relieves the cross-tie site frustration, with ordered moments on the spine-site and cross-tie sites of 2.73μB and 1.54μB, respectively. The spin direction for all spins is along the a axis (Ising-like behavior). A dielectric anomaly is observed around the ferromagnetic transition temperature of 6.2K, demonstrating that there is significant spin-charge coupling present in CVO. A theory based on group theory analysis and a minimal Ising model with competing exchange interactions can explain the basic features of the magnetic ordering

    Field Dependence of Magnetic Ordering in Kagomé-Staircase Compound Ni\u3csub\u3e3\u3c/sub\u3eV\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e8\u3c/sub\u3e

    Get PDF
    We present powder and single-crystal neutron diffraction and bulk measurements of the Kagomé-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c direction. (The Kagomé plane is the a−c plane.) This system contains two types of Ni ions, which we call “spine” and “cross-tie.” Our neutron measurements can be described with the paramagnetic space group Cmca for T\u3c15K and each observed magnetically ordered phase is characterized by the appropriate irreducible representation(s). Our zero-field measurements show that at TPH=9.1K NVO undergoes a transition to a predominantly longitudinal incommensurate structure in which the spine spins are nearly along the a-axis. At THL=6.3K, there is a transition to an elliptically polarized incommensurate structure with both spine and cross-tie moments in the a−b plane. At TLC=4K the system undergoes a first-order phase transition to a commensurate antiferromagnetic structure with the staggered magnetization primarily along the a-axis and a weak ferromagnetic moment along the c-axis. A specific heat anomaly at TCC′=2.3K indicates an additional transition, which remarkably does not affect Bragg peaks of the commensurate C structure. Neutron, specific heat, and magnetization measurements produce a comprehensive temperature-field phase diagram. The symmetries of the incommensurate magnetic phases are consistent with the observation that only one phase is electrically polarized. The magnetic structures are explained theoretically using a simplified model Hamiltonian, that involves competing nearest- and next-nearest-neighbor exchange interactions, single-ion anisotropy, pseudodipolar interactions, and Dzyaloshinskii-Moriya interactions

    Magnetic and Optical Response of Tuning the Magnetocrysalline Anisotropy in Fe3O4 Nanoparticle Ferrofluids by Co Doping

    No full text
    CoxFe3−xO4 (0⩽x⩽0.10) nanoparticles coated with tetramethyl ammonium hydroxide as a surfactant were synthesized by a co-precipitation technique. The Fe:Co ratio was tuned up to x=0.10 by controlling the Co2+ concentration during synthesis. The mean particle size, determined by transmission electron microscopy, ranged between 15±4 and 18±4 nm. The superparamagnetic blocking temperature and the magnetocrystalline anisotropy constant of the ferrofluids, determined using ac and dc magnetic measurements, scale approximately linearly with cobalt concentration. We also find distinct differences in the optical response of different samples under an applied magnetic field. We attribute changes in field-induced optical relaxation for the x=0 and 0.05 samples to differences in the anisotropic microstructure under an applied magnetic field

    The 10 Australian ecosystems most vulnerable to tipping points

    No full text
    We identify the 10 major terrestrial and marine ecosystems in Australia most vulnerable to tipping points, in which modest environmental changes can cause disproportionately large changes in ecosystem properties. To accomplish this we independently surveyed the coauthors of this paper to produce a list of candidate ecosystems, and then refined this list during a 2-day workshop. The list includes (1) elevationally restricted mountain ecosystems, (2) tropical savannas, (3) coastal floodplains and wetlands, (4) coral reefs, (5) drier rainforests, (6) wetlands and floodplains in the Murray-Darling Basin, (7) the Mediterranean ecosystems of southwestern Australia, (8) offshore islands, (9) temperate eucalypt forests, and (10) salt marshes and mangroves. Some of these ecosystems are vulnerable to widespread phase-changes that could fundamentally alter ecosystem properties such as habitat structure, species composition, fire regimes, or carbon storage. Others appear susceptible to major changes across only part of their geographic range, whereas yet others are susceptible to a large-scale decline of key biotic components, such as small mammals or stream-dwelling amphibians. For each ecosystem we consider the intrinsic features and external drivers that render it susceptible to tipping points, and identify subtypes of the ecosystem that we deem to be especially vulnerable
    corecore