193 research outputs found

    Measurement of the reaction \gamma p \TO K^ + \Lambda(1520) at photon energies up to 2.65 GeV

    Full text link
    The reaction \gamma p \TO K^+\Lambda(1520) was measured in the energy range from threshold to 2.65 GeV with the SAPHIR detector at the electron stretcher facility ELSA in Bonn. The Λ(1520)\Lambda(1520) production cross section was analyzed in the decay modes pKpK^-, nKˉ0n \bar{K}^0, Σ±π\Sigma^{\pm}\pi^{\mp}, and Λπ+π\Lambda\pi^+\pi^- as a function of the photon energy and the squared four-momentum transfer tt. While the cross sections for the inclusive reactions rise steadily with energy, the cross section of the process \gamma p \TO K^+\Lambda(1520) peaks at a photon energy of about 2.0 GeV, falls off exponentially with tt, and shows a slope flattening with increasing photon energy. The angular distributions in the tt-channel helicity system indicate neither a KK nor a KK^\star exchange dominance. The interpretation of the Λ(1520)\Lambda(1520) as a Σ(1385)π\Sigma(1385)\pi molecule is not supported.Comment: 11 pages, 16 figures, 4 table

    Role of the K1K_1 meson in K0K^0 photoproduction off the deuteron

    Full text link
    Neutral kaon photoproduction off the nucleon and deuteron has been reinvestigated by utilizing the new experimental data on both targets. An isobar model for elementary operator and impulse approximation for the reaction on the deuteron have been used. The available free parameters in the elementary model have been extracted from both elementary and deuteron data. In contrast to the elementary reaction, fitting the deuteron data requires an inclusion of weighting factor. The result indicates that the angular distribution of the elementary K0ΛK^0\Lambda process does not show backward peaking behavior.Comment: 4 pages, 4 figures, prepared for the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Seoul, Korea, August 22-26, 201

    Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

    Full text link
    The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.Comment: 21 pages, 25 figures, submitted to Eur. Phys. J.

    Momentum transfer using chirped standing wave fields: Bragg scattering

    Full text link
    We consider momentum transfer using frequency-chirped standing wave fields. Novel atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure

    Quantum-state control in optical lattices

    Full text link
    We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend themselves particularly well to reservoir engineering via well controlled fluctuations in the potential, making the atom/lattice system attractive for the study of decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199

    Evidence for the positive-strangeness pentaquark Θ+\Theta^+ in photoproduction with the SAPHIR detector at ELSA

    Get PDF
    The positive--strangeness baryon resonance Θ+\Theta^+ is observed in photoproduction of the nK+Ks0\rm nK^+K^0_s final state with the SAPHIR detector at the Bonn ELectron Stretcher Accelerator ELSA. It is seen as a peak in the nK+\rm nK^+ invariant mass distribution with a 4.8σ4.8\sigma confidence level. We find a mass MΘ+=1540±4±2\rm M_{\Theta^+} = 1540\pm 4\pm 2 MeV and an upper limit of the width ΓΘ+<25\rm \Gamma_{\Theta^+} < 25 MeV at 90% c.l. From the absence of a signal in the pK+\rm pK^+ invariant mass distribution in γppK+K\rm\gamma p\to pK^+K^- at the expected strength we conclude that the Θ+\Theta^+ must be isoscalar.Comment: 9 pages, 4 figure

    K0-Sigma+ Photoproduction with SAPHIR

    Full text link
    Preliminary results of the analysis of the reaction p(gamma,K0)Sigma+ are presented. We show the first measurement of the differential cross section and much improved data for the total cross section than previous data. The data are compared with model predictions from different isobar and quark models that give a good description of p(gamma,K+)Lambda and p(gamma,K+)Sigma0 data in the same energy range. Results of ChPT describe the data adequately at threshold while isobar models that include hadronic form factors reproduce the data at intermediate energies.Comment: 4 pages, Latex2e, 4 postscript figures. Talk given at the International Conference on Hypernuclear and Strange Particle Physics (HYP97), Brookhaven National Laboratory, USA, October 13-18, 1997. To be published in Nucl. Phys. A. Revised version due to changes in experimental dat

    Coherent Control of Atomic Beam Diffraction by Standing Light

    Full text link
    Quantum interference is shown to deliver a means of regulating the diffraction pattern of a thermal atomic beam interacting with two standing wave electric fields. Parameters have been identified to enhance the diffraction probability of one momentum component over the others, with specific application to Rb atoms.Comment: 5 figure
    corecore