447 research outputs found

    Pre-operational baseline studies of selected nearshore marine biota at the Diablo Canyon power plant site: 1979-1982

    Get PDF
    This is the final report of the California Department of Fish and Games intertidal and subtidal surveys of plants and animals in the vicinity of the Diablo Canyon Power Plant. These studies cover the period from 1979 through 1982. Our previous report (Gotshall, et al. 1984) covered the period from 1973 through 1978. The report includes abundances and statistical analyses of comparisons of abundances between years and study areas for selected intertidal and subtidal plants and animals. A total of 556 random subtidal stations, 540 intertidal stations and 67 permanent abalone transects were completed during this report period. Trends in abundances of most species observed during our 1973 through 1978 studies continued, i.e. the population of giant red sea urchins remained at a very low level, bull kelp Nereocystis leutkeana densities continued to decline in Diablo Cove and North Control. These two trends are probably due to the effects of continued sea otter foraging in the study area. Our observations of the presence or absence of fishes at subtidal 30m stations indicate a continued decline in the abundances of lingcod, Ophiodon elongatus and a decline in the abundance of blue rockfish since the 1973 through 1978 study period. A new study was begun during this study period, the use of baited stations to obtain relative abundance indices for those species of fishes attracted to the bait. Black-and-yellow rockfish were the most frequently observed fishes at Diablo Cove stations, while blue rockfish were the most frequently observed fish at North control baited stations. (Document has 393 pages

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure

    Shear-induced quench of long-range correlations in a liquid mixture

    Full text link
    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known ∣∇c∣2/k4|\nabla c|^2/k^4 long-range correlation at large wave numbers kk crosses over to a weaker divergent one for wave numbers satisfying k<(γ˙/D)1/2k<(\dot{\gamma}/D)^{1/2}, while an asymptotic shear-controlled power-law dependence is confirmed at much smaller wave numbers given by k≪(γ˙/ν)1/2k\ll (\dot{\gamma}/\nu)^{1/2}, where cc, γ˙\dot{\gamma}, DD and ν\nu are the mass concentration, the rate of the shear, the mass diffusivity and the kinematic viscosity of the mixture, respectively. The result will provide for the first time the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique.Comment: 8pages, 2figure

    Theory of Disordered Itinerant Ferromagnets I: Metallic Phase

    Full text link
    A comprehensive theory for electronic transport in itinerant ferromagnets is developed. We first show that the Q-field theory used previously to describe a disordered Fermi liquid also has a saddle-point solution that describes a ferromagnet in a disordered Stoner approximation. We calculate transport coefficients and thermodynamic susceptibilities by expanding about the saddle point to Gaussian order. At this level, the theory generalizes previous RPA-type theories by including quenched disorder. We then study soft-mode effects in the ferromagnetic state in a one-loop approximation. In three-dimensions, we find that the spin waves induce a square-root frequency dependence of the conductivity, but not of the density of states, that is qualitatively the same as the usual weak-localization effect induced by the diffusive soft modes. In contrast to the weak-localization anomaly, this effect persists also at nonzero temperatures. In two-dimensions, however, the spin waves do not lead to a logarithmic frequency dependence. This explains experimental observations in thin ferromagnetic films, and it provides a basis for the construction of a simple effective field theory for the transition from a ferromagnetic metal to a ferromagnetic insulator.Comment: 15pp., REVTeX, 2 eps figs, final version as publishe

    Generation of entangled states of two atoms inside a leaky cavity

    Full text link
    An in-depth theoretical study is carried out to examine the quasi-deterministic entanglement of two atoms inside a leaky cavity. Two Λ\Lambda-type three-level atoms, initially in their ground states, may become maximally entangled through the interaction with a single photon. By working out an exact analytic solution, we show that the probability of success depends crucially on the spectral function of the injected photon. With a cavity photon, one can generate a maximally entangled state with a certain probability that is always less than 50%. However, for an injected photon with a narrower spectral width, this probability can be significantly increased. In particular, we discover situations in which entanglement can be achieved in a single trial with an almost unit probability

    Actors and networks or agents and structures: towards a realist view of information systems

    Get PDF
    Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure

    Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection

    Get PDF
    We present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-B\'enard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing-down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.Comment: 13 pages, 10 figures, 52 reference

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    Many particle entanglement in two-component Bose-Einstein Condensates

    Full text link
    We investigate schemes to dynamically create many particle entangled states of a two component Bose-Einstein condensate in a very short time proportional to 1/N where NN is the number of condensate particles. For small NN we compare exact numerical calculations with analytical semiclassical estimates and find very good agreement for N≥50N \geq 50. We also estimate the effect of decoherence on our scheme, study possible scenarios for measuring the entangled states, and investigate experimental imperfections.Comment: 12 pages, 8 figure
    • …
    corecore