412 research outputs found

    Coordinating Collaboration to End Homelessness: A Mid-Point Learning Assessment of the Reaching Home Campaign and Opening Doors, Connecticut

    Get PDF
    In Connecticut, the Partnership for Strong Communities (PSC) and a group of advocacy organizations, government agencies, and community providers are leading a campaign to end homelessness in the state. Guided by the vision that "No one should experience homelessness," the Reaching Home Campaign and Opening Doors—Connecticut (the "Campaign") emphasizes housing as an essential platform for human and community development. The Campaign brings together a broad spectrum of partners representing diverse sectors to collectively build the political and civic will to end homelessness. In just three years, the Campaign has already achieved remarkable success advocating for and securing over $300 million in funding for programs to end homelessness and to create permanent supportive and affordable housing. Among its many accomplishments, the Campaign conducted the state's first study of youth experiencing homelessness and released the Opening Doors for Youth plan to end youth homelessness. The Campaign is also closing in on the goal of ending homelessness among Veterans, as well as launching a pilot program to connect families receiving rapid rehousing with employment supports and implementing a successful pilot that identifies and connects frequent users of emergency departments at hospitals to housing and supportive services. To support the Campaign's work at this important juncture as it moves past planning and towards implementation and sustainability, the Melville Charitable Trust—a private foundation and longtime partner of the effort—approached The Building Movement Project (BMP) to conduct a mid-point learning assessment. One goal of the assessment was to help the Campaign take stock of its internal structures and processes. Another goal was to share insights on what it means to coordinate collaboration, given the growing use of "collective impact" as a strategy to address social problems

    Influence of Line Tension on Spherical Colloidal Particles at Liquid-Vapor Interfaces

    Get PDF
    Atomic force microscopy (AFM) imaging of isolated submicron dodecyltrichlorosilane coated silica spheres, immobilized at the liquid polystyrene- (PS-) air interface at the PS glass transition temperature, Tg , allows for determination of the contact angle θ versus particle radius R . At Tg , all θ versus R measurements are well described by the modified Young’s equation for a line tension τ=0.93  nN . The AFM measurements are also consistent with a minimum contact angle θmin and minimum radius Rmin , below which single isolated silica spheres cannot exist at the PS-air interface

    Improved In Situ Spring Constant Calibration for Colloidal Probe Atomic Force Microscopy

    Get PDF
    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane)

    Viscosity Dependent Liquid Slip at Molecularly Smooth Hydrophobic Surfaces

    Get PDF
    Colloidal probe atomic force microscopy is used to study the slip behavior of 18 Newtonian liquids from two homologous series, the n-alkanes and n-alcohols, at molecularly smooth hydrophobic n-hexadecyltrichlorosilane coated surfaces. We find that the slip behavior is governed by the bulk viscosity η of the liquid, specifically, the slip length b∼ηx with x∼0.33. Additionally, the slip length was found to be shear rate independent, validating the use of Vinogradova slip theory in this work

    pH‐sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability

    Full text link
    Tombusviruses , such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short‐interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH‐dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH‐dependent binding profile.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97527/1/2243_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97527/2/PRO_2243_sm_SuppInfo.pd

    Repeat-Until-Success quantum computing using stationary and flying qubits

    Full text link
    We introduce an architecture for robust and scalable quantum computation using both stationary qubits (e.g. single photon sources made out of trapped atoms, molecules, ions, quantum dots, or defect centers in solids) and flying qubits (e.g. photons). Our scheme solves some of the most pressing problems in existing non-hybrid proposals, which include the difficulty of scaling conventional stationary qubit approaches, and the lack of practical means for storing single photons in linear optics setups. We combine elements of two previous proposals for distributed quantum computing, namely the efficient photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev. A 71, 060310(R) (2005)] with the idea of Repeat-Until-Success (RUS) quantum computing by Lim et al. [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be used to perform eventually deterministic two-qubit logic gates on spatially separated stationary qubits via photon pair measurements. Under non-ideal conditions, where photon loss is a possibility, the resulting gates can still be used to build graph states for one-way quantum computing. In this paper, we describe the RUS method, present possible experimental realizations, and analyse the generation of graph states.Comment: 14 pages, 7 figures, minor changes, references and a discussion on the effect of photon dark counts adde

    Forces at Individual Pseudopod-Filament Adhesive Contacts

    Get PDF
    On-chip cellular force sensors are fabricated from cantilever poly(3,4-ethylene dioxythiophene) filaments that visibly deflect under forces exerted at individual pseudopod-filament adhesive contacts. The shape of the deflected filaments and their ∼3 nN/μm spring constants are predicted by cantilever rod theory. Pulling forces exerted by Dictyostelium discoideumcells at these contacts are observed to reach ∼20 nN without breaking the contact

    A Neutron Star with a Massive Progenitor in Westerlund 1

    Get PDF
    We report the discovery of an X-ray pulsar in the young, massive Galactic star cluster Westerlund 1. We detected a coherent signal from the brightest X-ray source in the cluster, CXO J164710.2-455216, during two Chandra observations on 2005 May 22 and June 18. The period of the pulsar is 10.6107(1) s. We place an upper limit to the period derivative of Pdot<2e-10 s/s, which implies that the spin-down luminosity is Edot<3e33 erg/s. The X-ray luminosity of the pulsar is L_X = 3(+10,-2)e33 (D/5 kpc)^2 erg/s, and the spectrum can be described by a kT = 0.61+/-0.02 keV blackbody with a radius of R_bb = 0.27+/-0.03 (D/5 kpc}) km. Deep infrared observations reveal no counterpart with K1 Msun. Taken together, the properties of the pulsar indicate that it is a magnetar. The rarity of slow X-ray pulsars and the position of CXO J164710.2-455216 only 1.6' from the core of Westerlund 1 indicates that it is a member of the cluster with >99.97% confidence. Westerlund 1 contains 07V stars with initial masses M_i=35 Msun and >50 post-main-sequence stars that indicate the cluster is 4+/-1 Myr old. Therefore, the progenitor to this pulsar had an initial mass M_i>40 Msun. This is the most secure result among a handful of observational limits to the masses of the progenitors to neutron stars.Comment: 4 pages, 5 figures. Final version to match ApJL (added one figure since v2

    Constraints on intragroup stellar mass from hostless Type Ia supernova

    Full text link
    We probe the diffuse stellar mass in a sample of 1401 low redshift galaxy groups (10E13 - 10E14 Msun/h) by examining the rate of hostless Type Ia supernova (SNe Ia) within the groups. We correlate the sample of confirmed SNe Ia from the SDSS supernova survey with the positions of our galaxy groups, as well as with the resolved galaxies within them. We find that 19 of the 59 SNe Ia within the group sample have no detectable host galaxy, with another three ambiguous instances. This gives a robust upper limit that a maximum of 2.69% +1.58%/-1.34% of the group's total mass arises from diffuse stars in the intragroup medium. After correcting for a contribution from "prompt" SNe occurring within galaxies, and including a contribution from those which arise in dwarf galaxies below our photometric limit, we find that only 1.32% +0.78%/-0.70% of the group's total mass is likely in the form of diffuse stellar mass. Combining this result with the galaxy stellar mass functions of Yang et al., we find that 47% +16%/-15% of the stellar mass in our groups is in the form of diffuse light, so that stars make up a fraction 0.028 +0.011/-0.010 of the total group mass. Galaxy groups appear to be very efficient in disrupting stellar mass into a diffuse component; however, stars still make up a small fraction of the group mass, comparable to that seen in rich clusters. This remains a challenge to galaxy formation models.Comment: 5 pages, MNRAS Letters, in pres
    corecore