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Influence of Line Tension on Spherical Colloidal Particles at Liquid-Vapor Interfaces

Sean P. McBride and Bruce M. Law*
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(Received 27 March 2012; published 7 November 2012)

Atomic force microscopy (AFM) imaging of isolated submicron dodecyltrichlorosilane coated silica

spheres, immobilized at the liquid polystyrene- (PS-) air interface at the PS glass transition temperature,

Tg, allows for determination of the contact angle � versus particle radius R. At Tg, all � versus R

measurements are well described by the modified Young’s equation for a line tension � ¼ 0:93 nN. The

AFM measurements are also consistent with a minimum contact angle �min and minimum radius Rmin,

below which single isolated silica spheres cannot exist at the PS-air interface.

DOI: 10.1103/PhysRevLett.109.196101 PACS numbers: 68.37.Ps, 61.46.Df, 68.03.Cd, 68.08.Bc

Line tension is due to an excess of energy caused by the
imbalance of intermolecular forces at the three phase con-
tact line (TPCL) [1]. This TPCL exists in systems (1)
where liquid droplets reside on solid-vapor or liquid-liquid
interfaces or (2) when solid particles reside on liquid-liquid
or liquid-vapor interfaces (LVIs). The line tension, �, or
energy per unit length associated with this TPCL [2] is a
subject of continuing interest [3–6]. Line tensions for
liquid droplets have been measured on both liquid [7]
and solid interfaces [8–10] and for spherical colloids at
liquid interfaces [5,11–14]. The line tension has been
shown to influence the surface nucleation of liquid droplets
[15], the surface aggregation and fragmentation dynamics
of liquid droplets with liquid droplets [7], the wettability of
liquid droplets in the vicinity of a wetting transition [8,16],
and the stability of films and foams [17], and is expected to
play a significant role in particle self-assembly at liquid
interfaces [18].

Understanding the line tension � will be important to a
range of industrial and scientific processes that involve
submicron particles at liquid interfaces including the emul-
sification of cleaner liquid fuels [19], nanoparticle catalysis
for biofuel production [20], targeted drug delivery pro-
cesses [21–23], and nanoparticle membranes which self-
assemble at liquid interfaces [5,18,24]. As the interfacial
particle size decreases, � will play an increasingly impor-
tant role in the stability of such systems [25,26]. The sign
of � determines whether the contact angle �, associated
with the TPCL at the LVI, decreases or increases with
increasing size where both signs have been measured
[2,3,25]. The experimental magnitude for � varies consid-
erably (10�12 to 10�6 N) where some measurements agree
with theoretical expectations (�� 10�12 to 10�10 N)
[2,27,28], while many others are orders of magnitude
larger than theoretical expectations [3,5,25,29] The mag-
nitude of � is a controversial subject, and the source of
discrepancies between theory and experiment has yet to be
resolved.

In this work, we investigate � for submicron particles at
LVIs. For these systems, there are a number of unresolved

problems. How can one reliably determine � for submicron
particles at liquid interfaces [30,31] and what role does �
play in determining the surface properties of particles at
this interface [5]? Does � influence the phase behavior of
particles at this interface and at what size scale does this
effect become important [32]? In this Letter, we answer all
of these questions using a novel technique for studying
particles at the polymer-air interface. Unlike existing tech-
niques [3–6], the innovative technique used here takes
advantage of the high topographical resolution available
in atomic force microscopy (AFM). Our experimental
technique requires particles to be first equilibrated at a
temperature well above the glass transition temperature,
Tg, of the polymer (liquid phase), then allowed to cool

slowly below Tg (solid phase). Atomic force microscopy is

used at room temperature to image particles (of radius R)
embedded at this solidified polymer interface, allowing
accurate determination of the particle contact angle � at
Tg. The line tension � is determined by comparing the

modified Young’s equation [Eq. (4)] with � versus R data.
These observations provide significant insights into parti-
cle phase behavior and self-assembly at the LVI.
In the experiments, polystyrene (PS) samples containing

silica spheres with radii R� 88–498 nm (Table I), at typi-
cal concentrations of �2–8 wt%, were prepared as fol-
lows. The silica spheres, acquired from Particle Solutions
LLC, Bang Laboratories, or grown via the Stöber method
[33] were first cleaned [34] and then coated with dodecyl-
trichlorosilane using wet chemistry [34,35]. In the Stöber
method, the silica sphere radius was controlled by the
amount of ammonium hydroxide NH4OH (0.71–1.3 mL)
added to a tetraethylorthosilicate ethanol solution [33,34].
Several milliliters of a chloroformþ silica particle stock
solution (100 mg coated spheres to 10 �L chloroform) was
mixed with �30 mg of PS by sonication. Chloroform was
evaporated off via periodic heating and sonication. This
mixture was deposited onto a hydrofluoric acid glass
etched microscope slide. Residual chloroform (boiling
point �61 �C) was completely removed by heating the
sample above Tg to 100 �C for 12 hours in an enclosed
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environment. The chloroform free sample was cooled
to Tg naturally over many hours, thus ‘‘freezing’’ in the

liquid equilibrium state of the particles at the LVI. The
PS, from Polymer Standards Service, Mainz, Germany, has
a molecular weight MW� 1890 g �mol�1, polydispersity
index �1:06, glass transition temperature Tg �46:9 �C
[36], and surface tension �LV � 39:9� 0:5 mN=m at Tg

[34]. The PS macroscopic contact angle, on a molecularly
smooth dodecyltrichlorosilane coated Si wafer, is �1 �
64:8� 1:0�. Both �LV and �1 were measured using a long
range microscope (First Ten Angstroms FTA100) [34].

An Asylum Research MFP-3D AFM with an Olympus
AC240TS cantilever (tip radius �9� 2 nN) was used for
imaging. Isolated spheres, at least 10 sphere diameters
from any neighbors, were imaged and the lateral radius
b and protrusion height h [defined in the Fig. 2(b) inset]
were measured using the AFM amplitude and height
trace, respectively (Fig 1 inset). The lateral radius b was
extracted from the amplitude trace by fitting a circle to 16
points placed at the TPCL using Image Pro Plus 5.0 soft-
ware. The particle radius R and contact angle � (Fig. 1)
were determined from b and h using the geometric rela-
tionships R ¼ ðb2 þ h2Þ=2h and � ¼ cos�1ð1� h=RÞ.
The measurement uncertainties in b and h are estimated
to be �b ¼ �11 nm (worst case tip sharpness) and
�h ¼ �0:01R. Any AFM images which exhibited nano-
scale contamination or TPCL pinning in the phase or
amplitude trace images were excluded from consideration
[34]. Pure solidified PS, with no nanospheres present
exhibited a surface roughness comparable to a silicon
wafer [34].

The R versus � data in Fig. 1 can be understood by
considering the particle energy at the LVI,

Es ¼ �SVA1 þ �SLA2 þ 2�b�; (1)

where �ij is the surface energy between phases i and j (S,

L, and V denote solid, liquid, and vapor, respectively), A1

(A2) is the upper (lower) spherical cap area, while � is the
line tension associated with the TPCL of length 2�b.
Energy for particle attachment to this interface is obtained
by comparing Es with the energy of a completely sub-
merged particle [25],

Eb ¼ �SLðA1 þ A2Þ þ �b2�LV: (2)

When the particle is submerged, Eq. (2) accounts for
the extra LVI surface area of size �b2 now present with
surface energy �LV . Geometry requires that b ¼ R sin�,
h ¼ Rð1� cos�Þ, and A1 ¼ 2�Rh; hence the attachment
energy E ¼ Es–Eb becomes [37].

E ¼ �LV cos�12�R2ð1� cos�Þ
þ �2�R sin�� �LV�R

2sin2�; (3)

where Young’s equation [38], cos�1 ¼ ð�SV � �SLÞ=�LV ,
has been used. Here, �1 is the macroscopic contact angle
the liquid would make with an infinitely large particle
(i.e., R ! 1) or, equivalently, the contact angle the liquid
makes with a molecularly smooth flat solid surface
possessing identical surface chemistry to the particle. The
particle is in mechanical equilibrium at the LVI, hence
ðdE=d�Þ ¼ 0 which gives rise to the modified Young’s
equation [11,32,37]

cos� ¼ cos�1½1� �=b�LV��1: (4)

This equation describes how � varies as a function of particle
radius R due to the presence of �. This energy minimum,
ðd2E=d�2Þ> 0, disappears when ðd2E=d�2Þj�min¼0 (i.e.,

at a saddle point) implying that there is a minimum angle
�min, below which single isolated particles can no longer
exist at the LVI where [11,32,37,39]

cos�min ¼ ½cos�1�1=3: (5)

Equations (4) and (5) imply that there is a minimum radius
Rmin given by

TABLE I. Average PS-silica sphere sample characteristics
(# ¼ number of experimental measurements).

Ro R b h �

(#) (nm) (#) (nm) (nm) (nm) (deg.)

Bangs Lab. Inc. 34 518 15 498 440 267 62.3

Bangs Lab. Inc. 51 248 20 265 238 150 64.2

Stöber(1.3 mL) 34 184 12 197 167 93 58.0

Stöber(1.7 mL) 19 144 20 147 124 69 57.8

Stöber(0.9 mL) 30 125 5 139 118 67 56.6

Stöber(0.8 mL) 41 114 5 130 107 57 55.9

Stöber(0.77 mL) 41 96 16 122 101 54 56.2

Stöber(0.766 mL) 53 85 11 115 93 48 54.7

Stöber(0.762 mL) 46 66 9 116 88 43 53.8

Stöber(0.71 mL) 473 66 16 98 76 35 49.7

Particle Sol. LLC. 131 67 18 88 57 19 38.8

FIG. 1 (color online). Contact angle � versus particle radius R.
Group averaged experimental data (symbols), modified Young’s
equation Eq. (4) for � ¼ 0:93 nN (solid line), �min Eq. (5),
(horizontal line), Rmin Eq. (6), vertical line. Inset: AFM ampli-
tude (upper) and height trace (lower) for Stöber R� 184 nm
silica sphere.
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Rmin ¼ �½�LV sin�minð1� cos�1= cos�minÞ��1; (6)

below which single particles are unstable at the LVI and
these particles are submerged into the bulk liquid phase.
Equations (1)–(6) describe the physics of isolated particles
at a LVI. They predict that � should obey Eq. (4) and that no
isolated particles should exist at the LVI if � < �min or
R< Rmin. Equation (6) also implies a change in the inter-
facial phase behavior when R< Rmin, namely, a gaseous
phase of (single isolated) particles can no longer coexist
with clusters of particles. These equations however make
no statement about the behavior of particles within a surface
cluster; hence, particles within a cluster could potentially
possess � < �min or R< Rmin.

Figure 1 and Table I summarize average � versus R
measurements determined from 147 individual spheres
grouped into 11 size ranges with radii varying from
R� 88 to 498 nm, where the error bars represent the
standard deviation in experimental results. A nonlinear
least squares fit of Eq. (4) to the 147 measurements yields
� ¼ 0:93� 0:01 nN (Fig. 1, solid line). The horizontal and
vertical dashed lines in Fig. 1 represent �min � 40:4� and
Rmin � 78 nm, respectively, deduced from Eqs. (5) and (6)
using the worst case measurement uncertainties; hence, our
experimental � and R data are self-consistent with these
theoretical minima for �min and Rmin.

In order to provide a better understanding of the
colloidal particle attachment energy, E=kT [Eq. (3)] has
been plotted as a function of R and � in Fig. 2(a) where
kT is the thermal energy and �LV � 39:9� 0:5 mN=m,
�1 � 64:8� 1:0�, and � ¼ 0:93 nN are derived from our
experiments. The heavy solid line on this plot represents
the modified Young’s equation energy minimum, Eq. (4).
Cross-sections of E=kT versus �, at fixedR, are provided in
Fig. 2(b). The modified Young’s equation minimum,
occurs at �� 1 radian [�� 41:2 ! 64:8� as R increases
from Rmin to1]. For R> 124 nm this minimum is a global
minimum and possesses a lower energy than the energy
minimum at � ¼ 0. For 81:6 nm<R< 124:0 nm the
‘‘modified Young’s minimum’’ is a local minimum and
possesses a higher energy than the energy minimum at
� ¼ 0; however, particles at the LVI are kinetically trapped
in this local minimum because there is an energy barrier
(� kT) which separates the modified Young’s minimum
from the global minimum at � ¼ 0. At Rmin ¼ 81:6 nm
[Eq. (6)] and �min ¼ 41:2� [Eq. (5)] the modified Young’s
minimum disappears [heavy solid line, Fig. 2(b)] and the
energy E exhibits a saddle point; single particles with
R< Rmin can no longer be found at the LVI, they acquire
� ¼ 0 and are completely wetted by the liquid (i.e., sub-
merged beneath the liquid interface). These considerations
hold provided that surface tension forces dominate gravi-

tational forces, namely, R 	 ��1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�LV=�g
p

where ��1,
�, and g are the capillary length, liquid density, and
acceleration due to gravity, respectively [40].

In Table I and Fig. 3(a) the ‘‘as-prepared’’ group aver-
aged colloidal radius (Ro), measured via transmission
electron microscopy (TEM, Philips CM-100), is compared
with the group averaged colloidal radius (R) at the PS-air
surface, measured via AFM. These two measures of R
agree well, except for particles with R< 130 nm. This
disagreement arises from the fact that the as-prepared
distribution measured via TEM includes all particle sizes
in a sample, whereas, the surface distribution measured
via AFM includes only single (isolated) spheres at the
PS interface with R> Rmin. As further evidence for the
existence of Rmin � 80 nm, Fig. 3(d) compares a plot of
the as-prepared (shaded and black line) and surface (white)
normalized number distributions of spheres measured by
TEM and AFM, respectively, from the same Stöber
batch (0.71 mL NH4OH) where the AFM (TEM) image
is shown in Fig. 3(b) [Fig. 3(c)]. The as-prepared average
radius Ro � 66 nm in Fig. 3(d) is below Rmin and only a
small percentage of particles (� 12%) lie above Rmin. By
contrast, the PS-air distribution made from this same
Stöber batch, but at very high silica particle concentration
in PS (� 20 wt%), is markedly skewed relative to the as-
prepared sample where the surface distribution now starts
around Rmin and only spheres with R> Rmin are found at
the PS interface. It is important to note that the surface

FIG. 2 (color online). (a) Particle attachment energy E=kT
Eq. (3) for �LV ¼ 39:9 mN=m, �1 ¼ 64:8�, and � ¼ 0:93 nN.
Modified Young’s equation Eq. (4), solid line. (b) Energy cross-
sections at fixed R ¼ 81:6, 105.0, 124.0 and 140.0 nm where
Rmin ¼ 81:6 nm Eq. (6), heavy solid line. Inset: Schematic of
spherical particle at a surface: protrusion height h, lateral radius
b, contact angle �, particle radius R, upper (lower) spherical cap
area A1 (A2).
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distribution displayed in Fig. 3(d) includes all particles
shown in Fig. 3(b), both those in clusters as well as single
isolated spheres; this should be contrasted with the data in
Fig. 1, which represented only single isolated spheres at the
PS-air interface. Equations (1)–(6) do not preclude the
existence of small spheres with R< Rmin within clusters;
however, surprisingly the surface distribution exhibited in
Fig. 3(d) contain no spheres with radii below Rmin, even
within clusters. The most probable explanation for this
observation lies in our preparation method. The silica
spheres in PS are sonicated at high temperature, well above
Tg; this process is expected to physically separate smaller

spheres from their supporting (surface) cluster, causing
spheres with R< Rmin to be submerged below the PS
interface. Once the particles are submerged within the
bulk polystyrene, no TPCL is present; therefore, surface
tension forces no longer dominate and the particles will
start to settle to the bottom of the PS sample (as the
sphere’s gravitational potential energy dominates its ther-
mal energy for the current sphere size range [14]).

In summary, we have developed a novel techniquewhich
allows for the determination of � at the LVI for any sized
particle (from micrometers down to nanometers) at the
glass transition temperature of a polymer. The particle
protrusion height h, above the solidified polymer interface,
and lateral radius b are measured via AFM. The accuracy
of this method is only limited by the sharpness of the AFM
tip. We have tested this method for dodecyltrichlorosilane
coated silica spheres embedded in a solidified polystyrene-
air interface and confirmed that the variation of � with R is
in excellent agreement with the modified Young’s equation

[Eq. (4), Fig. 1] from which � ¼ 0:93� 0:01 nN is deter-
mined. Additionally, the surface averaged particle radius R
(measured by AFM) agrees well with the averaged sample
radius Ro (measured by TEM), except at very small R
approaching Rmin [Fig. 3(a)]. Our AFM measurements
are consistent with the existence of a �min [Eq. (5)] and
Rmin [Eq. (6)], below which individual isolated spheres
cannot exist at the LVI [Figs. 1 and 3(d)]. The presence
of a �min and Rmin, which ultimately arises from the line
tension �, implies that the particle surface phase diagram
changes when R< Rmin. At small R below Rmin, particle
phase coexistence can no longer exist; namely, a particle
cluster phase cannot coexist with a (single particle) gase-
ous phase as the latter phase is unstable.
The magnitude of the line tension � is controversial.

Some experiments have found agreement with theoretical
expectations (where �� 10�12 to 10�10 N) while others
have determined � values which may be orders of magni-
tude larger. Limitations in optical determinations of � have
been suggested as a potential source for these differences
[40]. These limitations are not applicable to the current
AFM based experiments where � ¼ 0:93 nN is still an
order of magnitude larger than theoretical expectations.
Our belief, and the belief of other scientists [3,11,17], is
that the distribution in � values is more a measure of
nature’s spread in � rather than necessarily a failing in
experimental technique. For example, if the ligand coating
the particle is similar in chemical structure to the liquid
solvent, then one would expect a small � value. Indeed
this is what was found for dodecanethiol ligated gold
nanoparticles at the LVI of a number of n-alkane solvents
(�� 1 pN) [14]. By contrast, if the ligand coating the
particle is dissimilar in chemical structure to the liquid
solvent then one might expect a much larger �; this is the
case in these current AFM-based measurements. The alkane-
like dodecyltrichlorosilane ligand coating the particles is
dissimilar to the polystyrene solvent, ½C8H8�n, and corre-
spondingly a much larger line tension is found (�� 1 nN).
A potential explanation for the discrepancy between

theoretical predications and a number of experiments can
be found in the work of Huang and coworkers [41]. They
demonstrated experimentally that the outermost subgroup
of a molecule at the LVI predominantly determines the
surface tension of a liquid. By analogy, it seems likely that
the outermost subgroup of a molecule immediately in
contact with the TPCL will predominantly determine �
for a system. This submolecular contact will be highly
dependent upon the molecular structure of the ligand and
the solvent, as well as their relative orientations. In general,
this submolecular contact is poorly modeled in simulations
and theories of �, which primarily are adept at capturing
the contributions to � further from the TPCL.
The authors thank Professor Dr. Stephan Herminghaus

and Professor Dr. Ralf Seemann for the polystyrene. The
authors are also grateful for the gift of silica spheres (Lot
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FIG. 3 (color online). Particle characteristics. (a) Average par-
ticle radii comparison: as-prepared sample measured via TEM
(Ro), surface sample measured via AFM (R), dashed line of
slope 1 if agreement is exact. (b) AFM image of Stöber silica
spheres at PS-air interface. (c) TEM image of silica spheres
(same Stöber batch, average radius Ro � 66 nm), scale bar ¼
500 nm. (d) Percentage sample distribution versus sphere radius
R: as-prepared distribution (shaded rectanglesþ black line from
473 spheres measured using TEM), surface distribution (white
rectangles from 123 spheres measured from two AFM images).
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