7,690 research outputs found

    Thinking beyond the hybrid:“actually-existing” cities “after neoliberalism” in Boyle <i>et al.</i>

    Get PDF
    In their article, ‘The spatialities of actually existing neoliberalism in Glasgow, 1977 to present’, Mark Boyle, Christopher McWilliams and Gareth Rice (2008) usefully problematise our current understanding of neoliberal urbanism. Our response is aimed at developing a sympathetic but critical approach to Boyle et al's understanding of neoliberal urbanism as illustrated by the Glasgow example. In particular, the counterposing by Boyle et al of a 'hybrid, mutant' model to a 'pure' model of neoliberalism for us misrepresents existing models of neoliberalism as a perfectly finished object rather than a roughly mottled process. That they do not identify any ‘pure’ model leads them to create a straw construct against which they can claim a more sophisticated, refined approach to the messiness of neoliberal urbanism. In contrast, we view neoliberalism as a contested and unstable response to accumulation crises at various scales of analysis

    Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates

    Get PDF
    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations, and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure

    Season of the year influences infection rates following total hip arthroplasty

    Get PDF
    To research the influence of season of the year on periprosthetic joint infections. METHODS We conducted a retrospective review of the entire Medicare files from 2005 to 2014. Seasons were classified as spring, summer, fall or winter. Regional variations were accounted for by dividing patients into four geographic regions as per the United States Census Bureau (Northeast, Midwest, West and South). Acute postoperative infection and deep periprosthetic infections within 90 d after surgery were tracked. RESULTS In all regions, winter had the highest incidence of periprosthetic infections (mean 0.98%, SD 0.1%) and was significantly higher than other seasons in the Midwest, South and West (P \u3c 0.05 for all) but not the Northeast (P = 0.358). Acute postoperative infection rates were more frequent in the summer and were significantly affected by season of the year in the West. CONCLUSION Season of the year is a risk factor for periprosthetic joint infection following total hip arthroplasty (THA). Understanding the influence of season on outcomes following THA is essential when risk-stratifying patients to optimize outcomes and reduce episode of care costs. © The Author(s) 2017

    Energy focusing inside a dynamical cavity

    Get PDF
    We study the exact classical solutions for a real scalar field inside a cavity with a wall whose motion is self-consistently determined by the pressure of the field itself. We find that, regardless of the system parameters, the long-time solution always becomes nonadiabatic and the field's energy concentrates into narrow peaks, which we explain by means of a simple mechanical system. We point out implications for the quantized theory.Comment: 5 pages, 6 figures, double column, submitted to P.R.

    The Schrodinger particle in an oscillating spherical cavity

    Full text link
    We study a Schrodinger particle in an infinite spherical well with an oscillating wall. Parametric resonances emerge when the oscillation frequency is equal to the energy difference between two eigenstates of the static cavity. Whereas an analytic calculation based on a two-level system approximation reproduces the numerical results at low driving amplitudes, epsilon, we observe a drastic change of behaviour when epsilon > 0.1, when new resonance states appear bearing no apparent relation to the eigenstates of the static system.Comment: 9 pages, 6 figures, corrected typo

    Realfast: Real-Time, Commensal Fast Transient Surveys with the Very Large Array

    Full text link
    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. Realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hours of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways real-time analysis can help in other fields of astrophysics.Comment: Accepted to ApJS Special Issue on Data; 11 pages, 4 figure

    Spin correlation and Discrete symmetry in Spinor Bose-Einstein Condensates

    Full text link
    We study spin correlations in Bose-Einstein condensates of spin 1 bosons with scatterings dominated by a total spin equal 2 channel. We show the low energy spin dynamics in the system can be mapped into an o(n)o(n) nonlinear sigma model(NLσ\sigmaM). n=3n=3 at the zero magnetic field limit and n=2n=2 in the presence of weak magnetic fields. In an ordered phase, the ground state has a hidden Z2Z_2 symmetry and is degenerate under the group [U(1)×Sn−1]/Z2[U(1)\times S^{n-1}]/Z_2. We explore consequences of the hidden symmetry and propose some measurements to probe it.Comment: 4 pages; published version in Phys. Rev. Lett. vol 87, 080401-1(2001
    • 

    corecore