121 research outputs found

    Postoperative Aspiration Pneumonia (PoPNA) Prevention Protocol

    Get PDF
    Postoperative pneumonia increases morbidity, mortality, length of stay, and hospital costs up to 12,000−12,000-40,000 per patient TJUH Center City ranked in the top 3rd - 4th quartile of pulmonary complications on the 2020 National Surgical Quality Improvement Program perioperative review ICOUGH protocol: widely accepted, standardized set of post-operative interventions to reduce pneumonia incidence Survey design: measure ICOUGH compliance before and after implementation of resident note checklist in EPI

    Acute Fulminant Colitis Caused by Idiopathic Mesenteric Inflammatory Veno-Occlusive Disease

    Get PDF
    Mesenteric inflammatory veno-occlusive disease (MIVOD) is an uncommon but important cause of bowel inflammation. MIVOD is characterised by lymphocytic inflammation and non-thrombotic occlusion of the mesenteric venules and veins. We present the case of a young man who presented with acute fulminant colitis, requiring colectomy. The differential diagnosis, pathogenesis and treatment are discussed. This case illustrates the rapid progression from ‘well’ to ‘colectomy’ that can occur with MIVOD. MIVOD should be considered in the differential diagnosis of colitis that does not respond to conventional medical treatment

    Workload and workflow implications associated with the use of electronic clinical decision support tools used by health professionals in general practice: a scoping review

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. All data generated or analysed during this study are included in this published article.BACKGROUND: Electronic clinical decision support tools (eCDS) are increasingly available to assist General Practitioners (GP) with the diagnosis and management of a range of health conditions. It is unclear whether the use of eCDS tools has an impact on GP workload. This scoping review aimed to identify the available evidence on the use of eCDS tools by health professionals in general practice in relation to their impact on workload and workflow. METHODS: A scoping review was carried out using the Arksey and O'Malley methodological framework. The search strategy was developed iteratively, with three main aspects: general practice/primary care contexts, risk assessment/decision support tools, and workload-related factors. Three databases were searched in 2019, and updated in 2021, covering articles published since 2009: Medline (Ovid), HMIC (Ovid) and Web of Science (TR). Double screening was completed by two reviewers, and data extracted from included articles were analysed. RESULTS: The search resulted in 5,594 references, leading to 95 full articles, referring to 87 studies, after screening. Of these, 36 studies were based in the USA, 21 in the UK and 11 in Australia. A further 18 originated from Canada or Europe, with the remaining studies conducted in New Zealand, South Africa and Malaysia. Studies examined the use of eCDS tools and reported some findings related to their impact on workload, including on consultation duration. Most studies were qualitative and exploratory in nature, reporting health professionals' subjective perceptions of consultation duration as opposed to objectively-measured time spent using tools or consultation durations. Other workload-related findings included impacts on cognitive workload, "workflow" and dialogue with patients, and clinicians' experience of "alert fatigue". CONCLUSIONS: The published literature on the impact of eCDS tools in general practice showed that limited efforts have focused on investigating the impact of such tools on workload and workflow. To gain an understanding of this area, further research, including quantitative measurement of consultation durations, would be useful to inform the future design and implementation of eCDS tools.The Dennis and Mireille Gillings FoundationCancer Research UKUniversity of ExeterUniversity of Exeter Medical Schoo

    Chronic Obstructive Pulmonary Disease Is Associated with Worse Oncologic Outcomes in Early-Stage Resected Pancreatic and Periampullary Cancers

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer mortality in the United States. Hypoxic and hypercapnic tumor microenvironments have been suggested to promote tumor aggressiveness. The objective of this study was to evaluate the association between chronic obstructive pulmonary disease (COPD) and oncologic survival outcomes in patients with early-stage PDAC and periampullary cancers. In this case-control study, patients who underwent a pancreaticoduodenectomy during 2014–2021 were assessed. Demographic, perioperative, histologic, and oncologic data were collected. A total of 503 PDAC and periampullary adenocarcinoma patients were identified, 257 males and 246 females, with a mean age of 68.1 (±9.8) years and a mean pre-operative BMI of 26.6 (±4.7) kg/m2. Fifty-two percent of patients (N = 262) reported a history of smoking. A total of 42 patients (8.3%) had COPD. The average resected tumor size was 2.9 ± 1.4 cm and 65% of the specimens (N = 329) were positive for lymph-node involvement. Kaplan–Meier analysis showed that COPD was associated with worse overall and disease-specific survival (p \u3c 0.05). Cox regression analysis showed COPD to be an independent prognostic factor (HR = 1.5, 95% CI 1.0–2.3, p = 0.039) along with margin status, lymphovascular invasion, and perineural invasion (p \u3c 0.05 each). A 1:3 nearest neighbor propensity score matching was also employed and revealed COPD to be an independent risk factor for overall and disease-specific survival (OR 1.8 and OR 1.6, respectively; p \u3c 0.05 each). These findings may support the rationale posed by in vitro laboratory studies, suggesting an important impact of hypoxic and hypercapnic tumor respiratory microenvironments in promoting therapy resistance in cancer

    Repurposing the FDA-Approved Anthelmintic Pyrvinium Pamoate for Pancreatic Cancer Treatment: Study Protocol for a Phase I Clinical Trial in Early-Stage Pancreatic Ductal Adenocarcinoma

    Get PDF
    BACKGROUND: Recent reports of the utilisation of pyrvinium pamoate (PP), an FDA-approved anti-helminth, have shown that it inhibits pancreatic ductal adenocarcinoma (PDAC) cell growth and proliferation in-vitro and in-vivo in preclinical models. Here, we report about an ongoing phase I open-label, single-arm, dose escalation clinical trial to determine the safety and tolerability of PP in PDAC surgical candidates. METHODS AND ANALYSIS: In a 3+3 dose design, PP is initiated 3 days prior to surgery. The first three patients will be treated with the initial dose of PP at 5 mg/kg orally for 3 days prior to surgery. Dose doubling will be continued to a reach a maximum of 20 mg/kg orally for 3 days, if the previous two dosages (5 mg/kg and 10 mg/kg) were tolerated. Dose-limiting toxicity grade≥3 is used as the primary endpoint. The pharmacokinetic and pharmacodynamic (PK/PD) profile of PP and bioavailability in humans will be used as the secondary objective. Each participant will be monitored weekly for a total of 30 days from the final dose of PP for any side effects. The purpose of this clinical trial is to examine whether PP is safe and tolerable in patients with pancreatic cancer, as well as assess the drug\u27s PK/PD profile in plasma and fatty tissue. Potential implications include the utilisation of PP in a synergistic manner with chemotherapeutics for the treatment of pancreatic cancer. ETHICS AND DISSEMINATION: This study was approved by the Thomas Jefferson Institutional Review Board. The protocol number for this study is 20F.041 (Version 3.1 as of 27 October 2021). The data collected and analysed from this study will be used to present at local and national conferences, as well as, written into peer-reviewed manuscript publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05055323

    A step towards personalizing next line therapy for resected pancreatic and related cancer patients: A single institution\u27s experience

    Get PDF
    Background: There is a lack of precision medicine in pancreatic ductal adenocarcinoma (PDA) and related cancers, and outcomes for patients with this diagnosis remain poor despite decades of research investigating this disease. Therefore, it is necessary to explore novel therapeutic options for these patients who may benefit from personalized therapies. Objective: Molecular profiling of hepatopancreaticobiliary malignancies at our institution, including but not limited to PDA, was initiated to assess the feasibility of incorporating molecular profiling results into patient oncological therapy planning. Methods: All eligible patients from Thomas Jefferson University (TJU) with hepatopancreaticobiliary tumors including PDA, who agreed to molecular testing profiling, were prospectively enrolled in a registry study from December 2014 to September 2017 and their tumor samples were tested to identify molecular markers that can be used to guide therapy options in the future. Next generation sequencing (NGS) and protein expression in tumor samples were tested at CLIA-certified laboratories. Prospective clinicopathologic data were extracted from medical records and compiled in a de-identified fashion. Results: Seventy eight (78) patients were enrolled in the study, which included 65/78 patients with PDA (local and metastatic) and out of that subset, 52/65 patients had surgically resected PDA. Therapy recommendations were generated based on molecular and clinicopathologic data for all enrolled patients. NGS uncovered actionable alterations in 25/52 surgically resected PDAs (48%) which could be used to guide therapy options in the future. High expression of three proteins, TS (p = 0.005), ERCC1 (p = 0.001), and PD-1 (p = 0.04), was associated with reduced recurrence-free survival (RFS), while TP53 mutations were correlated with longer RFS (p = 0.01). Conclusions: The goal of this study was to implement a stepwise strategy to identify and profile resected PDAs at our institution. Consistent with previous studies, approximately half of patients with resected PDA harbor actionable mutations with possible targeted therapeutic implications. Ongoing studies will determine the clinical value of identifying these mutations in patients with resected PDA

    SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53

    Get PDF
    Background: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. Methodology/Principal Findings: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-DExon8. We show that SIRT1-DExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-DExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-DExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. Conclusions/Significance: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed betwee

    FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure

    Get PDF
    Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis
    • …
    corecore