32 research outputs found

    Effects of the Zebra Mussel on Nitrogen Dynamics and the Microbial Community at the Sediment-Water Interface

    Get PDF
    A flow-through experiment was conducted on intact cores of sediments from Saginaw Bay, Lake Huron, to examine how trophic interactions between filter-feeding bivalve mussels and microbial populations could affect nitrogen dynamics at the sediment-water interface. The zebra mussels used in this experiment removed a large proportion of protozoa and phytoplankton from the overlying water, particularly heterotrophic nanoplankton (up to 82%), while bacterial populations showed less change. A 3-fold decrease in the protozoan to bacterial carbon ratio corresponded to a 2.5-fold increase in relative ammonium removal rates as estimated from the dark loss of N-15-ammonium. Excretion by the bivalves also increased net ammonium flux to the water, thus elevating the total calculated areal ammonium removal rates to about B-fold over rates observed in the control treatment. These data suggest that filter-feeding bivalves may significantly affect nitrogen transformation rates near the sediment-water interface by excreting ammonium and altering the microbial food web structure at the sediment-water interface

    Cold Acclimation Strategy Is Highly Variable among the Sunfishes (Centrarchidae)

    Get PDF
    We tested the hypothesis that the physiological strategy for acclimating to low body temperature is similar among closely related fish. Largemouth bass (Micropterus salmoides), green sunfish (Lepomis cyanellus), bluegill sunfish (Lepomis macrochirus), black crappie (Pomonix nigromaculatus), and white crappie (Pomonix annularis), all members of the family Centrarchidae, were acclimated to 5° and 25°C. Morphometric variables (total mass, total length, organ masses) and enzyme activities (hexokinase; lactate dehydrogenase; and cytochrome oxidase in heart, liver, and muscle) were measured in 5°C- and 25°C-acclimated fish at 5° and 25°C assay temperatures. Each species displayed a distinct physiological response to cold acclimation that differed among tissues. These data suggest that the response to cold acclimation is highly variable within families. Our findings are consistent with other studies suggesting that acclimation responses are labile and may evolve independently even among closely related species. Reprinted by permission of the publisher

    The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters

    Get PDF
    Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp. were not affected even at 20 nM. These results indicate that PUA can induce changes in microzooplankton dynamics and species composition

    Nitrogen cycling rates and light effects in tropical Lake Maracaibo, Venezuela

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109860/1/lno19984381814.pd

    Effects of Microzooplankton Growth and Trophic Interactions on Herbivory in Coastal and Offshore Environments

    Get PDF
    We performed serial dilution experiments to estimate rates of gross phytoplankton growth (L) and grazing mortality (m) in both eutrophic (Corpus Christi Bay, Texas, USA) and oligotrophic (offshore Gulf of Mexico) waters. Two parallel experiments were performed in both environments, with seawater pre-screened through 153 or 25 Inn mesh to observe the responses of microzooplankton (MZP) to dilution treatments. MZP biomass changed over the duration of the experimental incubations; in several treatments, MZP net growth rates were \u3e1 d(-1). Patterns of growth varied between dilutions and initial screening size. In the eutrophic system, the ratio of phytoplankton grazing mortality rate to gross phytoplankton growth rate (m/mu) was 1.10 +/- 0.54 (mean +/- SD) versus 0.41 +/- 0.65 when screened through 153 and 25 pm mesh, respectively. This difference was attributed to cascading trophic interactions among MZP size groups leading to suppression of the primary herbivores in the 25 pm fraction and, in turn, a lower value of m. A food web model consisting of multiple trophic levels was constructed to examine the role of MZP growth and trophic interactions on measurements of p and m. The model, using 3 interacting groups of MZP, was able to reproduce experimental results. Model simulations demonstrated that MZP growth during incubation leads to an overestimation of m. Non-linearity in the phytoplankton growth response curves was due to MZP growth and trophic interactions in these model simulations, as variable feeding responses were not incorporated into the models. Trophic interactions among MZP can provide context to measurements of P. and m and insight into microbial food web efficiency

    Grazing and Virus-Induced Mortality of Microbial Populations Before and During the Onset of Annual Hypoxia in Lake Erie

    Get PDF
    Lake Erie is the most productive of the North American Great Lakes and experiences annual periods of hypolimnetic hypoxia with unknown consequences for the microbial food web. We established the abundances and mortality rates of microbes in Lake Erie during thermal stratification and determined how they varied with changes in bottom-water dissolved oxygen concentrations. The microbial plankton community (heterotrophic bacteria, Cyanobacteria, eukaryotic phytoplankton, nanozooplankton, microzooplankton) was quantified in surface and bottom waters along with measurements of herbivory and bacterivory rates on eukaryotic and prokaryotic picoplankton and rates of viral lysis of bacteria. High rates of grazing mortality of prokaryotic picoplankton (1.4 +/- 0.6 d(-1)) and eukaryotic algae (0.66 +/- 0.27 d(-1)) and significant correlations between microzooplankton abundances and all picoplankton populations quantified demonstrated the strong impacts of grazing on Lake Erie picoplanktonic communities. Microbial herbivory accounted for half of total phytoplankton mortality per day. Bacterivory and viral lysis turned over 85% of the heterotrophic bacterial community each day. During the onset of hypolimnetic hypoxia, abundances of ciliates and rotifers decreased significantly and herbivory was undetectable. Concurrently, bacterivory persisted at rates equal to those found in shallower oxygenated waters, and abundances of heterotrophic nanoflagellates did not change significantly. These results suggest that, during hypoxia events in Lake Erie, herbivory by microzooplankton is disrupted, but bacterivory by heterotrophic nanoflagellates persists. Finally, rates of viral lysis of heterotrophic bacteria were higher in the hypolimnion than in surface waters, suggesting that increased viral lysis may enhance regeneration of organic matter in bottom waters during hypoxic events

    A Modeling Study of Benthic Detritus Flux\u27s Impacts on Heterotrophic Processes in Lake Michigan

    Get PDF
    Effects of sediment resuspension-induced benthic detrital flux on the heterotrophic part of the microbial food web in Lake Michigan were examined using a three-dimensional (3-D) coupled biological and physical model. The model was driven by the realistic meteorological forcing observed in March 1999. Wind-induced surface wave dynamics were incorporated into the physical model to generate the bottom flux. The model-generated benthic detrital flux was assumed to be proportional to the difference between model-calculated and critical stresses at the bottom. The model results indicate that detrital flux at the bottom was a key factor causing a significant increase of phosphorus and detritus concentrations in the nearshore region of the springtime plume. Inside the plume the sediment-resuspended bottom detritus flux could directly enhance heterotrophic production, while outside the plume, detrital flux from river discharge might have a direct contribution to the high abundance of bacteria and microzooplankton in the nearshore region. Model-data comparison on cross-shore transects near Chicago, Gary, St. Joseph, and Racine suggests that other physical and biological processes may play a comparative role as the bottom detritus flux in terms of the spatial distribution of bacteria and microzoplankton. A more complete microbial food web model needs to be developed to simulate the heterotrophic process in southern Lake Michigan

    Microzooplankton growth rates examined across a temperature gradient in the Barents Sea.

    Get PDF
    Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (-1.8-9.0°C) in the Barents Sea and adjacent waters (70-78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33-1.67 d(-1) and 0.52-1.14 d(-1), respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey
    corecore