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ABSTRACT

We tested the hypothesis that the physiological strategy for
acclimating to low body temperature is similar among closely
related fish. Largemouth bass (Micropterus salmoides), green
sunfish (Lepomis cyanellus), bluegill sunfish (Lepomis macro-
chirus), black crappie (Pomonix nigromaculatus), and white
crappie (Pomonix annularis), all members of the family Cen-
trarchidae, were acclimated to 5� and 25�C. Morphometric var-
iables (total mass, total length, organ masses) and enzyme ac-
tivities (hexokinase; lactate dehydrogenase; and cytochrome
oxidase in heart, liver, and muscle) were measured in 5�C- and
25�C-acclimated fish at 5� and 25�C assay temperatures. Each
species displayed a distinct physiological response to cold ac-
climation that differed among tissues. These data suggest that
the response to cold acclimation is highly variable within fam-
ilies. Our findings are consistent with other studies suggesting
that acclimation responses are labile and may evolve indepen-
dently even among closely related species.

Introduction

Temperate-zone fishes undergo wide seasonal fluctuations in
habitat temperature and thus body temperature (4�–30�C); as
such, they make an excellent group for thermal acclimation
studies. Numerous studies have described dramatic changes in
morphology and physiology of fish as they acclimate to low
body temperatures. Typical responses to cold acclimation in-
clude increased heart size (Kent et al. 1988; Sephton and Dried-
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zic 1991; Rodnick and Sidell 1997), increased mitochondrial
density (Eggington and Sidell 1989; Guderley 1990; Rodnick
and Sidell 1994), increased enzymatic indicators of aerobic and
anaerobic metabolism (Shaklee et al. 1977; Kent et al. 1988;
Rodnick and Sidell 1994; Pierce and Crawford 1997; Podrabsky
et al. 2000), increased lipid oxidation in red muscle (Rodnick
and Sidell 1994), increased red muscle mass (Jones and Sidell
1982; Eggington and Sidell 1989; Rodnick and Sidell 1994), and
increased calcium ATPase activity (Johnston et al. 1990).

From the rich literature of temperature acclimation in fish
comes the general assertion/observation that response to cold
is similar among many different species. Following this is a
second assertion that the generalized suite of physiological re-
sponses to cold are adaptive (e.g., increased heart size com-
pensates for increased blood viscosity at low temperature and
allows the fish to remain active). However, one cannot defin-
itively characterize these changes as adaptive unless they in-
crease the fitness of the organism (Gould and Lewontin 1979).
For example, fitness does not always increase in E. coli as a
result of temperature acclimation (Leroi et al. 1994). We wish
to test the assertion that cold-acclimation response is similar
among different species, as an initial approach to our long-
term goal of testing the beneficial acclimation assumption in
fishes (e.g., What variation, if any, is available for selection to
act on in this group?).

To investigate the question of how acclimation response var-
ies among species, we chose the Centrarchidae (sunfishes). Sun-
fishes are well suited for acclimation studies. They are easily
maintained and abundant, they have an established phylogeny
(Mabee 1993; Fig. 1), and all have a similar habitat and range.
In addition, species within Centrarchidae apparently exhibit a
variety of responses to seasonal fluctuations in environmental
temperature. It has been reported that largemouth bass do not
show any of the indicators of cold acclimation (Kolok 1992);
however, smallmouth bass do (doubling of heart ventricle mass;
Sephton and Driedzic 1991). Green sunfish may or may not
cold acclimate depending on the variables measured; Kent et
al. (1988) documented an increase in ventricular heart mass
and protein content on cold acclimation, Sidell (1977) dem-
onstrated reduced cytochrome C turnover rates in cold-
acclimated green sunfish, and Shaklee et al. (1977) documented
tissue-specific responses to cold acclimation. Kolok (1991),
however, reported no increase in ventricular mass or citrate
synthase activity in this species.

Data for largemouth bass, green sunfish, and smallmouth bass
currently exist; however, expanding the study to other closely
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Figure 1. Phylogeny of the Centrarchidae, redrawn from Mabee (1993; with permission of author and publisher). Triangles indicate species in
this study.

Table 1: Morphometric variables

Species and
Acclimation
Temperature (�C) TW (g) TL (cm) Heart (g) Liver (g) Brain (g) Carcass (g)

Green sunfish:
5 57.62 � 4.83 14.4 � .43 .06 � .004 1.16 � .06 .06 � .01 53.27 � 4.50
25 68.59 � 10.52 15.1 � .74 .07 � .01 1.88 � .32 .04 � .006 63.88 � 9.90

Bluegill:
5 37.13 � 4.94 13.29 � .47 .03 � .006 .40 � .09 .06 � .01 34.33 � 4.48
25 54.84 � 5.77 14.94 � .33 .04 � .004 1.20 � .33 .07 � .007 51.96 � 5.89

Black crappie:
5 73.26 � 5.25 17.33 � .27 .06 � .009 .83 � .17 .07 � .02 69.47 � 5.02
25 107.34 � 5.17 19.00 � .32 .05 � .004 .64 � .10 .07 � .01 101.90 � 5.22

White crappie:
5 161.21 � 12.77 23.5 � .47 .12 � .009 1.21 � .29 .12 � .007 153.89 � 12.18
25 128.79 � 20.41 21.8 � 1.53 .08 � .01 .66 � .12 .06 � .005 121.04 � 19.42

Largemouth bass:
5 107.25 � 12.45 20.2 � .52 .09 � .006 2.60 � .61 .06 � .02 103.27 � 12.17
25 135.57 � 17.20 20.79 � 1.12 .09 � .01 4.20 � .83 .14 � .04 127.30 � 16.07

Note. ; . Green sunfish, per acclimation group; bluegill, at 5�C, at 25�C; black crappie,TW p total weight TL p total length N p 5 N p 7 N p 5

per acclimation group; white crappie, per acclimation group; largemouth bass, per acclimation group. Values are .N p 3 N p 4 N p 3 means � SE

related species within the sunfish family allowed us to ask the
question: Is there similarity of acclimation response among spe-
cies in the Centrarchidae? We chose congeneric species within
three separate clades of Centrarchidae so we could compare re-
sponse within and among clades (Fig. 1). As a first approach to
the general problem of how acclimation response affects fitness,

we measured various indicators of acclimation in these five spe-
cies to determine the following: (1) Is acclimation response var-
iable among species? (2) If acclimation response is variable, is
that variation correlated with phylogeny? Our results indicate
that cold acclimation response is highly variable among the five
species we tested, with no clear pattern related to phylogeny.
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Table 2: Two-way ANCOVA testing for effects of species and acclimation in heart weight and
liver weight

Source

df Sum of
Squares F ratio Prob 1 FNumerator Denominator

Heart weight:a

Acclimation 1 1 .00155846 7.7609 .0084
Species 4 4 .00110680 1.3779 .2604
Acclimation # species 4 4 .00225788 2.8110 .0392
Covariate 1 1 .01260750 62.7839 !.0001

Liver weight:b

Acclimation 1 1 .635970 .8095 .3741
Species 4 4 11.593489 3.6891 .0126
Acclimation # species 4 4 3.323705 1.0576 .3911
Covariate 1 1 8.197924 10.4346 .0026

a , overall , . Covariate is total mass minus organ mass.2R p 0.82 F p 21.8846 prob 1 F ! 0.0001
b , overall , . Covariate is total mass minus organ mass.2R p 0.56 F p 6.8648 prob 1 F ! 0.0001

Material and Methods

Animal Husbandry

Largemouth bass (Micropterus salmoides), black crappie (Po-
monix nigromaculatus), and green sunfish (Lepomis cyanellus)
were purchased from Fender’s Fish Hatchery (Baltic, Ohio).
Fender’s is an extensive versus intensive hatchery (fish are raised
in ponds with full exposure to natural temperature and pho-
toperiod variation). Bluegill sunfish (Lepomis macrochirus) were
collected at Bath Nature Preserve, and white crappie (Pomonix
annularis) were caught locally (Portage Lakes), both with hook
and line. Each species was housed in rectangular, temperature-
controlled, 80-gal recirculating aquaria (one species per tank).
Tap water was treated with Stresscoat (Aquarium Pharmaceu-
ticals, Chalfont, Pa.) to neutralize chlorine. Fish were fed com-
mercial trout pellets daily, with the exception of white and black
crappie, which were fed fathead minnows ad lib. Tanks were
checked daily for water temperature, ammonia levels, animal
health, and equipment condition. All fish were 12 yr in age
and were considered adults.

Fish were acclimated over 8 wk, two species at a time (large-
mouth bass and green sunfish, then bluegill and white crappie,
then black crappie). Water temperature was raised or lowered
1.5�C per day until temperatures of 5� and 25�C were reached
for cold- and warm-acclimated fish, respectively. Once the ap-
propriate acclimation temperatures were achieved, the fish were
maintained at these temperatures for 6 wk. At the end of the
8-wk (total) acclimation period, the animals were killed by an
overdose of 3-aminobenzoic acid ethyl ester (MS-222), and
their tissues were harvested and either assayed immediately
(hexokinase and cytochrome oxidase; all tissues assayed within
hours of dissection) or frozen in liquid nitrogen for later anal-
ysis (lactate dehydrogenase). Total weight and length of each
fish were recorded. Hearts were removed, and the ventricle was

rinsed, blotted, and weighed. White glycolytic muscle was re-
moved from the left body wall just below the dorsal fin. Total
liver was removed, rinsed, blotted, weighed, and diced to ran-
domize the portion of liver used for enzyme assays.

Enzyme Assays

Enzyme activities were measured with a Spectronic Genesys 2
spectrophotometer (Spectronic Instruments, Rochester, N.Y.)
fitted with a water-jacketed, multisample cuvette holder. Six
cuvettes were run simultaneously (duplicates plus one control
from two animals). Assay temperature was controlled by cir-
culating an antifreeze-water mixture through the cuvette holder
and an external recirculating bath. Homogenates (10%, w/v)
of heart ventricle, glycolytic muscle, and liver were prepared
in an extraction medium containing 40 mM HEPES, 1 mM
EDTA, and 2 mM MgCl2 (pH 7.6 at 15�C). Each assay was
initially optimized by varying homogenate concentration at the
given substrate concentration to achieve a linear change in
absorbance over time. Enzyme activity was measured at both
5� and 25�C to determine whether enzyme activity was affected
by acclimation (e.g., lactate dehydrogenase from bluegill sunfish
acclimated to 5�C was measured at 5� and 25�C). Enzyme ac-
tivity was expressed as units (mmol/min) gram�1.

Hexokinase, HK (EC 2.7.1.1). This assay was performed essen-
tially as described by Zammit and Newsholme (1976). The assay
was initiated by the addition of glucose; formation of product
was monitored by following the reduction of NADP at 340 nm
over 5 min. Background activity (subtracted from total activity)
was monitored without addition of glucose.

Lactate Dehydrogenase, LDH (EC 1.1.1.27). This assay was ini-
tiated with the addition of sodium pyruvate and monitored by



Figure 2. Enzyme activities from heart tissue of acclimated sunfish. (Micropterus salmoides),LMB p largemouth bass GSF p green sunfish
(Lepomis cyanellus), (Lepomis macrochirus), (Pomonix annularis), (PomonixBG p bluegill WC p white crappie BC p black crappie
nigromaculatus).
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Figure 3. Enzyme activities from skeletal muscle tissue of acclimated sunfish. (Micropterus salmoides),LMB p largemouth bass GSF p green
(Lepomis cyanellus), (Lepomis macrochirus), (Pomonix annularis), (Pomonixsunfish BG p bluegill WC p white crappie BC p black crappie

nigromaculatus).

following the oxidation of NADH at 340 nm over 5 min, as
described in Hansen and Sidell (1983). Background activity
(subtracted from total activity) was monitored without addition
of sodium pyruvate.

Cytochrome Oxidase, CYTOX (EC 1.9.3.1). The assay was ini-
tiated by adding homogenate and monitoring the oxidation of
cytochrome C (reduced with ascorbate) at 550 nm over 3 min,
as described by Wharton and Tzagoloff (1967) and Hansen and
Sidell (1983). Background was measured as oxidation of cy-
tochrome C without homogenate.

Swimming Activity

Swimming activity was measured three times per week during
each of the final 3 wk of acclimation (for all species except
white crappie, total observations/acclimation ; forgroup p 9

white crappie, total observations/acclimation ). Fishgroup p 6
were viewed via overhead mirrors to prevent the fish from
seeing the observer. Before feeding, chillers were turned off (so
that fish could be seen clearly), and fish were given 10 min to
adjust to the change in water flow and presence of the observer
in the room. Activity was defined as the number of times any
individual crossed the center line of the tank in a 5-min interval.
Activity was expressed per fish to correct for the number of
fish in a tank (five to 13).

Statistical Analysis

Statistical analyses were performed using JMP statistical soft-
ware (SAS Institute, Cary, N.C.). Our goal was to test whether
response to acclimation differed significantly among species.

Test of Variation in Organ Mass. For analysis of heart and liver



Figure 4. Cytochrome oxidase activity from liver tissue of acclimated sunfish. (Micropterus salmoides),LMB p largemouth bass GSF p green
(Lepomis cyanellus), (Lepomis macrochirus), (Pomonix annularis), (Pomonixsunfish BG p bluegill WC p white crappie BC p black crappie

nigromaculatus).

Table 3: Repeated measures MANOVA on heart enzyme activity by source of
variation

F

df

Prob 1 FNumerator Denominator

F-testa 3.321 9 30 .0063
Source of variation:

Enzyme 6.0513 18 58 !.0001
Species 7.6093 8 58 !.0001
Acclimation 10.0270 2 29 .0005
Species # acclimation 4.3803 8 58 .0004

Assay temperature 3.3210 9 30 .0063
Species 3.8519 4 30 .0121
Acclimation 4.4400 1 30 .0436
Species # acclimation 2.4579 4 30 .0669

Assay temperature # enzyme 3.8664 8 58 !.0001
Species 3.3371 8 58 .0033
Acclimation 6.3497 2 29 .0052
Species # acclimation 3.3912 8 58 .0029

Note. Probability level for each source of variation indicates whether or not the factor had a significant

effect on enzyme activity. In this analysis, assay temperature and the assay interactiontemperature # enzyme

were treated as repeated measures, and enzyme was treated as a nonrepeated multivariate measure. Sources

of variation below the main headings (assay temperature, enzyme, assay ) indicate thetemperature # enzyme

effect of factors when averaged across the effect identified by the heading; of freedom.df p degrees
a Test of the significance of the full factorial model incorporating the effects listed below “Source of variation.”
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Table 4: Repeated measures MANOVA on heart hexokinase activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species .7790 4 30 .5477
Acclimation 4.9502 1 30 .0338
Species # acclimation 3.5315 4 30 .0178

Within subjects:
Assay temperature 97.2117 1 30 !.0001
Assay temperature # species 1.9616 4 30 .1260
Assay temperature # acclimation 3.4637 1 30 .0726
Assay temperature # species # acclimation 3.4204 1 30 .0203

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0157 df p degrees

Table 5: Repeated measures MANOVA on heart cytochrome oxidase activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species 6.1425 4 30 .0010
Acclimation .5395 1 30 .4683
Species # acclimation 3.2713 4 30 .0244

Within subjects:
Assay temperature 8.1574 1 30 .0077
Assay temperature # species 2.8910 4 30 .0389
Assay temperature # acclimation 3.1682 1 30 .0852
Assay temperature # species # acclimation 3.8951 1 30 .0115

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0013 df p degrees

mass, we used a two-way ANCOVA to test for the effects of
species and acclimation temperature on organ mass while con-
trolling for body-size variation. We did this by using total mass
minus organ mass as a covariate (Hayes and Shonkwiler 1996).

Overall Test of Sources of Variation in Enzyme Activity. For each
tissue (heart, liver, muscle), we used a repeated measures
MANOVA to test whether species, acclimation temperature,
assay temperature, and their statistical interactions were sig-
nificant sources of variation in enzyme activity. We chose this
over the univariate approach because it makes fewer assump-
tions about the structure of the covariance matrices (Keselman
et al. 2001). If the overall MANOVA was significant, we followed
up with simpler repeated measures ANOVAs to test the im-
portance of specific independent variables in explaining ob-
served variation in enzyme activities. This approach is analo-
gous to following up ANOVA with individual t-tests to test the
significance of specific comparisons (e.g., levels of a factor in
one-way ANOVA) subsequent to ANOVA (Sokal and Rolhf
1981). In theory, we could have added tissue as a repeated
measure in the overall analysis described above. However, given
small sample sizes and missing cells for some enzymes and

species, we would not have had enough degrees of freedom for
the tests of interest; treating tissues in separate analyses is a
reasonable approach to take given the limitation of our dataset.
For example, we analyzed heart tissue as follows: (1) dependent
variables: (a) HK assayed at 5� and 25�C, (b) CYTOX assayed
at 5� and 25�C, and (c) LDH assayed at 5� and 25�C; (2) in-
dependent variables: (a) acclimation temperature and (b)
species.

The model is a compound repeated measures MANOVA;
enzyme activity is measured at assay temperatures of 5� and
25�C, and each individual fish was sampled for all three en-
zymes. Assay temperature is treated as a repeated measure and
enzyme as a nonrepeated multivariate measure.

Results

Heart and Liver Mass

Body size varied considerably among species and across accli-
mations (Table 1), confounding the direct comparison of heart
and liver mass as a result of acclimation. When accounting for
variation in body mass by ANCOVA, none of the interactions
involving the covariate was significant (for heart or liver), and
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Table 6: Repeated measures MANOVA on heart lactate dehydrogenase activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species 9.1759 4 30 !.0001
Acclimation 11.6854 1 30 .0018
Species # acclimation 4.1546 4 30 .0085

Within subjects:
Assay temperature 46.9055 1 30 !.0001
Assay temperature # species 4.5524 4 30 .0054
Assay temperature # acclimation 6.9668 1 30 .0130
Assay temperature # species # acclimation 2.3319 1 30 .0785

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0001 df p degrees

Table 7: Whole-model (full factorial) repeated measures
MANOVA for muscle

Test Value
Exact
F

df

Prob 1 FNumerator Denominator

F-test .662951 2.1214 5 16 .1155

Note. A test of the significance of the full factorial model incorporating the

effects listed in Table 3.

thus they were dropped from the full model. The reduced model
for heart was highly significant, explaining ∼82% of the vari-
ance in heart mass ( ; Table 2). Acclimation did resultP ! 0.0001
in significantly larger hearts in 5�C fish (all species included).
Acclimation had no significant effect on liver size (Table 2).

Enzyme Activity

Mean (�SE) enzyme activities for heart, muscle, and liver of
each species are presented in Figures 2–4. One can do any
pairwise comparison visually by comparing overlap of 2 SEs.
However, although multiple t-tests have been used for accli-
mation studies in the past (Shaklee et al. 1977), the field now
recognizes that this approach will likely lead to a significant
Type I error. In addition, the question we are addressing (cold
acclimation response in the Centrarchidae) is less concerned
with comparisons between species than with total response
across species. This question is most appropriately analyzed by
MANOVA, and therefore all enzymes were analyzed collectively
in a MANOVA by tissue (e.g., separate MANOVAs for heart,
muscle, liver). The full factorial model, using dependent var-
iables (hexokinase assayed at 5� and 25�C, cytochrome oxidase
assayed at 5� and 25�C, and lactate dehydrogenase assayed at
5� and 25�C) and independent variables (acclimation temper-
ature, species, and all possible interaction terms), was strongly
significant (Table 3). Therefore, we are justified in conducting
more specific tests at the tissue level.

Heart. The overall model for heart is highly significant
( ; Table 3). Of particular import to theprob 1 F ! 0.0001
question of how species respond to acclimation, the spe-
cies # acclimation interaction is significant (prob 1 F p

), indicating that considering all heart enzymes, species0.0005
do not respond equivalently to acclimation. Since the whole
model is significant, we were justified in doing more specific
tests by enzyme. The general structure of these enzyme-level
models was activity at 5�, activity at 25�C p acclimation �

. Species and species # accli-species � species # acclimation
mation are “between” subject factors, and assay temperature is
a “within” subject factor. The former measures effects across
individuals (on average), and the latter asks whether individuals
had a homogeneous response to assay temperature as a
function of the other factors. For hexokinase (Table 4) and
cytochrome oxidase (Table 5) activities in heart, species # ac-
climation interactions are significant, as are the assay tem-
perature # species # acclimation interactions within subjects.
Put another way, to predict the activities of these two enzymes
in heart, one must know assay temperature, species, and ac-
climation history. For lactate dehydrogenase (Table 6), the spe-
cies # acclimation interaction is significant, but the more com-
plex assay interaction istemperature # species # acclimation
marginal ( ). Therefore, for LDH in heart,prob 1 F p 0.0785
not all species respond equally to acclimation, but in a way
that perhaps does not depend on their response to assay
temperature.

Muscle. The whole-model, full factorial MANOVA is not sig-
nificant (Table 7). Therefore, further, more specific tests
(e.g., each enzyme) are not warranted. However, because
our sample sizes are small and therefore Type II error (low
power) is a concern, we extended the analyses to further
explain the whole-model result. Enzyme is marginally in-
significant (Table 8), perhaps because of a lack of statistical
power. However, for the individual enzymes measured in
muscle (cytochrome oxidase [Table 9] and lactate dehy-
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Table 8: Repeated measures MANOVA on muscle enzyme activity by source of
variation

Source of Variation F

df

Prob 1 FNumerator Denominator

Assay temperature 2.1214 5 16 .1155
Enzyme 2.3475 5 16 .0886
Assay temperature # enzyme 1.7137 2 16 .1265

Note. Probability level for each source of variation indicates whether or not the factor had a significant

effect on enzyme activity. In this analysis, assay temperature and the assay in-temperature # enzyme

teraction were treated as repeated measures, and enzyme was treated as a nonrepeated multivariate

measure. Sources of variation below the main headings (assay temperature, enzyme, assay

) indicate the effect of factors when averaged across the effect identified by thetemperature # enzyme

heading.

Table 9: Repeated measures MANOVA on muscle cytochrome oxidase activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species 11.5384 2 16 .0008
Acclimation 1.9369 1 16 .1830
Species # acclimation .1557 2 16 .8571

Within subjects 2.1286 5 16 .1145

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0058 df p degrees

drogenase [Table 10]), only species effects are significant (the
absolute value of these enzymes is different in muscle tissue
of different species). The interactionspecies # acclimation
(indicating that species respond differently to acclimation)
is not significant, supporting the result of the full model.

Liver. Only cytochrome oxidase was measured in liver, and there-
fore the structure of the MANOVA model is the same as in the
more specific tests in other tissues (e.g., cytochrome oxidase in
heart; Table 5). There is a significant in-species # acclimation
teraction in liver ( ; Table 11) and a marginallyprob 1 F p 0.0004
significant assay interac-temperature # species # acclimation
tion ( ). Not all species’ livers respond equiv-prob 1 F p 0.048
alently to acclimation, and the magnitude of this effect depends
also on assay temperature.

Swimming Activity

Largemouth bass, green sunfish, and bluegill sunfish all de-
creased average swimming movements per 5-min period by
more than an order of magnitude upon cold acclimation (Fig.
5). In black crappie, however, the reduction in activity is only
fourfold, and in white crappie there is no difference in mean
activity between cold- and warm-acclimated fish.

Discussion

The study of cold acclimation in fishes has a rich history that
reaches back to the pioneers of modern comparative physiology
(Das and Prosser 1967). Many of the responses to cold that
fish exhibit are unmistakable, including lipid deposition in aer-
obic muscle (Eggington and Sidell 1989), increased cardiac out-
put (Bailey and Driedzic 1990), and temperature-dependent
expression of myofibrillar protein isoforms (Crockford and
Johnston 1990). These studies leave little question that fish do
respond to cold and in a manner that is similar among species.
To what extent is response to cold (cold acclimation strategy)
variable in the Centrarchidae? Does that variability covary with
phylogeny? Our results document that cold acclimation strategy
is highly variable among the Centrarchidae, with no clear pat-
tern related to phylogeny.

Heart and Liver Hypertrophy

A general response to cold acclimation is hypertrophy at the
organ level. This response has been documented most fre-
quently in three tissues: heart (green sunfish and channel cat-
fish, Kent et al. 1988; smallmouth bass, Sephton and Driedzic
1991; striped bass, Rodnick and Sidell 1997), liver (channel
catfish, Kent et al. 1988), and red muscle (striped bass, Jones
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Table 10: Repeated measures MANOVA on muscle lactate dehydrogenase
activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species 4.7926 2 16 .0234
Acclimation 2.1142 1 16 .1653
Species # acclimation 2.4013 2 16 .1225

Within subjects 2.1286 5 16 .1436

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0396 df p degrees

Table 11: Repeated measures MANOVA on liver cytochrome oxidase activity

Source of Variation F

df

Prob 1 FNumerator Denominator

Between subjects:
Species 15.9715 4 30 !.0001
Acclimation 8.7378 1 30 .0060
Species # acclimation 7.1129 4 30 .0004

Within subjects: 4.9561 9 30 .0004
Assay temperature 64.4309 1 30 !.0001
Assay temperature # species 8.3120 4 30 !.0001
Assay temperature # acclimation .7069 1 30 .4071
Assay temperature # species # acclimation 2.7083 4 30 .048

Note. Overall model (between subjects) significance ; of freedom.P ! 0.0001 df p degrees

and Sidell 1982; Eggington and Sidell 1989; Guderley 1990;
Rodnick and Sidell 1994; goldfish, Johnston and Lucking 1978;
Eggington and Sidell 1989; Guderley 1990). Our analyses dem-
onstrate that there is a significant effect of acclimation on heart
size (after correcting for body size, heart size is larger in 5�C-
acclimated animals). This effect was largely driven by black
crappie and white crappie (other species did not have a large
increase in heart mass on acclimation; Table 1). This is the one
case where we observed a similar strategy (increase in organ
mass) among congeners. However, even within Pomonix, other
dimensions of response to acclimation differ between the
congeners.

Cold Acclimation’s Effects on Enzyme Activity

One way to determine a metabolic response to temperature is
to assess the relative capacity of metabolic pathways via rep-
resentative enzyme assays (e.g., Crockett and Sidell 1990; Rod-
nick and Sidell 1994; Pierce and Crawford 1997). We chose
three enzymes that are typically measured in acclimation studies
and also represent three major metabolic pathways: aerobic
glycolysis (hexokinase), anaerobic carbohydrate metabolism
(lactate dehydrogenase), and oxidative phosphorylation (cy-
tochrome oxidase). Our absolute values for activity are within
the range reported for teleosts by Sidell et al. (1987), and we

saw similar patterns of enzyme response in green sunfish to
those reported by Shaklee et al. (1977). Specifically, responses
to cold acclimation of lactate dehydrogenase in muscle, heart,
and cytochrome oxidase activity in liver were identical between
the two studies. Shaklee et al. did demonstrate an increase in
cytochrome oxidase activity in muscle on cold acclimation,
whereas we did not. We assume this is due to muscle being
sampled from a different part of the fish (not specified by
Shaklee et al.) or a size- or age-specific phenomenon (Shaklee
et al. had a larger size range than we did).

We did not attempt to cover any one pathway completely
(e.g., Pierce and Crawford 1997) but rather to estimate capacity
in several pathways (e.g., Sidell et al. 1987; Crockett and Sidell
1990). We also recognize that some tissues in this study are
sampled more extensively than others (e.g., heart vs. liver) and
that sample sizes are low for some species. We chose to com-
promise between a question that is large in scale and practical
data collection (collecting and acclimating multiple species, dis-
secting multiple organs, 11,000 individual assays at multiple
temperatures). Our goal was to gather enough data to accept
or reject the hypothesis that response to acclimation is uniform
within a family of fishes. Our analyses resoundingly reject that
hypothesis.

Previous acclimation studies have shown that cold accli-
mation generally increases enzyme capacities in fish (Guderley
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Figure 5. Swimming activity was measured as the number of times a fish crossed the center line of the tank during a 5-min observation period
(per fish). (Micropterus salmoides), (Lepomis cyanellus), (Lepomis macrochirus),LMB p largemouth bass GSF p green sunfish BG p bluegill

(Pomonix annularis), (Pomonix nigromaculatus).WC p white crappie BC p black crappie

1990; Sephton and Driedzic 1991; Rodnick and Sidell 1994,
1997). In these studies, univariate analyses were appropriate
for the question addressed (e.g., Does variable X in tissue Y
respond to cold acclimation in species Z?). We also observed
increases in enzyme activity; however, we specifically addressed
the multivariate nature of cold acclimation to determine
whether cold-acclimation strategy was similar across species
within a family. This approach does not negate the validity of
differences for univariate-type questions. For example, hexo-
kinase activity, assayed at 5�C, is significantly greater (by t-test)
in cold-acclimated versus warm-acclimated white crappie heart
(Fig. 2). If one wished to test a hypothesis related to carbo-
hydrate metabolism in white crappie heart, this result, derived
by univariate analysis, would support an acclimation effect.

We hypothesized a priori that many of our variables would
covary, and the analyses bear that out (Tables 3–11). Univariate
analyses, by their nature, cannot account for complex covari-
ance matrices. Also, when variables covary in a complex man-
ner, MANOVA has increased statistical power (decreased Type
I error) versus univariate analyses (Keselman et al. 2001). Given
low sample sizes, one may be concerned about low power (in-
creased Type II error). However, we demonstrated significant
effects in all cases other than muscle; therefore, by definition
we have a sufficient sample size to demonstrate an effect. Simply
put, our question and design were more appropriately analyzed

by MANOVA, whereas other questions and designs in cold
acclimation (perhaps a majority) are better analyzed by various
univariate analyses. It is notable, however, that the univariate
repeated measures gave qualitatively identical results (data not
shown).

Do enzymes of sunfish species respond equivalently to tem-
perature acclimation? Our data suggest the answer is a re-
sounding no. The whole model, which includes effects of ac-
climation, species, and all possible interactions on enzyme
activity, is highly significant (Table 3). Parsing out what is
driving that significance, we find that all enzymes in heart
(Tables 3–6) and liver (Table 11) have a significant

interaction (indicating that species dospecies # acclimation
not respond equivalently to acclimation). Response to accli-
mation in muscle is not significant, raising the possibility that
we do not have sufficient power to estimate muscle response.
However, interaction effects arespecies # acclimation prob 1

and 0.1225 for cytochrome oxidase and lactate de-F p 0.8571
hydrogenase, respectively, suggesting the effects are strongly not
significant. These results suggest that cold-acclimation response
is complex; tissues, species, and tissues among species will not
respond equivalently. Shaklee et al. (1977) also saw no effect
of acclimation on LDH activity but did see an effect on cy-
tochrome oxidase, cytochrome C, pyruvate kinase, and alcohol
dehydrogenase. It may be that the difference in cytochrome
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oxidase response is due to the population of muscle fibers
sampled or that this response falls within the plasticity of re-
sponses seen within species. It is also possible that if we assayed
different enzymes in all species (such as pyruvate kinase or
alcohol dehydrogenase), we would have detected a significant

interaction (i.e., we may have reducedspecies # acclimation
power in this situation).

Swimming Activity

Recognizing that response to cold acclimation is multidimen-
sional, we attempted to estimate some aspect of behavioral
response. Although admittedly crude, our behavior measure-
ments did show a dramatic effect of cold acclimation on “rou-
tine” swimming behavior. All but one species (white crappie)
dramatically decrease activity on cold acclimation. Between the
Pomonix congeners, white and black crappie are both less severe
in their response to cold acclimation than the other sunfishes,
but only white crappie has equivalent activity in the cold. It is
difficult to translate these measurements to behavior on accli-
matization (field response); however, white crappie are among
the first fish to bite in the spring (anecdotal information from
anglers), perhaps because they maintain higher activity in the
cold. Reduction of routine activity should impact fuel reserves
and may be an important component of a fish’s multidimen-
sional overwintering strategy.

Phylogeny

There is no obvious correlation of acclimation response to
phylogenetic relationship. Within Pomonix, swimming activity
is qualitatively similar, and cardiac hypertrophy is similar, but
individual enzyme response is strikingly different between white
and black crappie (e.g., compare response among enzymes in
heart; Fig. 2). For the Lepomis congeners, there is no similarity
of response except for swimming activity.

Acclimation Strategies

Our results clearly demonstrate that the pattern of acclimation
response is different among the five species studied. What is
the source of this variation? We expected that congenerics
would show common responses to acclimation, given that they
are closely related. However, Pierce and Crawford (1997) ex-
amined the response of all glycolytic enzymes to temperature
acclimation in five species of Fundulus and found that each
had a distinct acclimation strategy. Further, enzyme profiles of
Fundulus heteroclitus are different between northern and south-
ern populations, suggesting that acclimation (acclimatization)
strategies may be different even within a species (Podrabsky et
al. 2000). These studies (including ours) suggest that accli-
mation response is flexible among closely related species and
even within species. If cold acclimation is adaptive, plasticity

of response (depending on age, sex, predation pressure, social
hierarchy, nutritional status, etc.) may be the selective trait.
Fish express an acclimation strategy that maximizes their fitness
in a specific situation. To that end, Seddon and Prosser (1997)
found that channel catfish collected during different seasons
had different responses to acclimation. Another possibility is
that cold acclimation is not adaptive but rather a historical
remnant or correlate of another adaptive response. Now that
we have established variation among the sunfish, we plan to
test variation within a species (among sibs under different ini-
tiating conditions).

Conclusions

Our results demonstrate that members of the sunfish family
differ significantly in their responses to cold acclimation. Sig-
nificant species # acclimation variation was demonstrated in
heart mass, heart enzyme activity, liver enzyme activity, and
swimming behavior (qualitatively) but not muscle-enzyme ac-
tivity. Variability in acclimation responses even among closely
related taxa does not appear to be unique to sunfishes (Craw-
ford et al. 1999). By exploiting this interfamily variation and
considering multiple variables simultaneously, we can test plas-
ticity of response within a species.
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