16 research outputs found
Hydrography shapes bacterial biogeography of the Deep Arctic Ocean
13 páginas, 5 figuras, 2 tablas.It has been long debated as to whether marine microorganisms have a ubiquitous distribution or patterns of biogeography, but recently a consensus for the existence of microbial biogeography is emerging. However, the factors controlling the distribution of marine bacteria remain poorly understood. In this study, we combine pyrosequencing and traditional Sanger sequencing of the 16S rRNA gene to describe in detail bacterial communities from the deep Arctic Ocean. We targeted three separate water masses, from three oceanic basins and show that bacteria in the Arctic Ocean have a biogeography. The biogeographical distribution of bacteria was explained by the hydrography of the Arctic Ocean and subsequent circulation of its water masses. Overall, this first taxonomic description of deep Arctic bacteria communities revealed an abundant presence of SAR11 (Alphaproteobacteria), SAR406, SAR202 (Chloroflexi) and SAR324 (Deltaproteobacteria) clusters. Within each cluster, the abundance of specific phylotypes significantly varied among water masses. Water masses probably act as physical barriers limiting the dispersal and controlling the diversity of bacteria in the ocean. Consequently, marine microbial biogeography involves more than geographical distances, as it is also dynamically associated with oceanic processes. Our ocean scale study suggests that it is essential to consider the coupling between microbial and physical oceanography to fully understand the diversity and function of marine microbes.Financial and ship time support from Fisheries and
Oceans Canada and the Canadian International Polar
Year Program’s Canada’s Three Oceans project and the
Nansen and Amundsen Basins Observational System
project. PE Galand was supported by a Marie Curie
Grant (CRENARC MEIF-CT-2007-040247) and EO
Casamayor by the Spanish Grant CGL2006-12058-BOS.
C Lovejoy would like to acknowledge the support of
the Natural Sciences and Engineering Council, Canada
(NSERC) Special Research Opportunity Fund and
ArcticNet. Deep Arctic samples were collected by
K Scarcella, E Didierjean and M-E´ Garneau. Pyrosequencing was supported by a Keck foundation grant
to M Sogin and L Ameral Zettler. This is a contribution
to the International Census of Marine Microbes (ICOMM).Peer reviewe
Antimicrobial stewardship, therapeutic drug monitoring and infection management in the ICU: results from the international A- TEAMICU survey.
BackgroundSevere infections and multidrug-resistant pathogens are common in critically ill patients. Antimicrobial stewardship (AMS) and therapeutic drug monitoring (TDM) are contemporary tools to optimize the use of antimicrobials. The A-TEAMICU survey was initiated to gain contemporary insights into dissemination and structure of AMS programs and TDM practices in intensive care units.MethodsThis study involved online survey of members of ESICM and six national professional intensive care societies.ResultsData of 812 respondents from mostly European high- and middle-income countries were available for analysis. 63% had AMS rounds available in their ICU, where 78% performed rounds weekly or more often. While 82% had local guidelines for treatment of infections, only 70% had cumulative antimicrobial susceptibility reports and 56% monitored the quantity of antimicrobials administered. A restriction of antimicrobials was reported by 62%. TDM of antimicrobial agents was used in 61% of ICUs, mostly glycopeptides (89%), aminoglycosides (77%), carbapenems (32%), penicillins (30%), azole antifungals (27%), cephalosporins (17%), and linezolid (16%). 76% of respondents used prolonged/continuous infusion of antimicrobials. The availability of an AMS had a significant association with the use of TDM.ConclusionsMany respondents of the survey have AMS in their ICUs. TDM of antimicrobials and optimized administration of antibiotics are broadly used among respondents. The availability of antimicrobial susceptibility reports and a surveillance of antimicrobial use should be actively sought by intensivists where unavailable. Results of this survey may inform further research and educational activities
Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury.
Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods