493 research outputs found

    Vortex instability in turbulent free-space propagation

    Get PDF
    The spatial structuring of optical fields is integral within many next generation optical metrology and communication techniques. A verifiable physical model of the propagation of these optical fields in a turbulent environment is important for developing effective mitigation techniques for the modal degradation that occurs in a free-space link. We present a method to simulate this modal degradation that agrees with recently reported experimental findings. A 1.5 km free-space link is emulated by decomposing the optical turbulence that accumulates over a long distance link, into many, weakly perturbing steps of 10 m. This simulation shows that the high-order vortex at the centre of the helical phase profiles in modes that carry orbital angular momentum of 2| {\ell }| \geqslant 2{\hslash } are unstable and fracture into many vortices when they propagate over the link. This splitting presents issues for the application of turbulence mitigation techniques. The usefulness of pre-correction, post-correction, and complex field conjugation techniques are discussed

    Robust interferometer for the routing of light beams carrying orbital angular momentum

    Get PDF
    We have developed an interferometer requiring only minimal angular alignment for the routing of beams carrying orbital angular momentum. The Mach–Zehnder interferometer contains a Dove prism in each arm where each has a mirror plane around which the transverse phase profile is inverted. One consequence of the inversions is that the interferometer needs no alignment. Instead the interferometer defines a unique axis about which the input beam must be coupled. Experimental results are presented for the fringe contrast, reaching a maximum value of 93±1%

    Measuring orbital angular momentum superpositions of light by mode transformation

    Get PDF
    We recently reported on a method for measuring orbital angular momentum (OAM) states of light based on the transformation of helically phased beams to tilted plane waves [Phys. Rev. Lett.105, 153601 (2010)]. Here we consider the performance of such a system for superpositions of OAM states by measuring the modal content of noninteger OAM states and beams produced by a Heaviside phase plate

    Divergence of an orbital-angular-momentum-carrying beam upon propagation

    Get PDF
    There is recent interest in the use of light beams carrying orbital angular momentum (OAM) for creating multiple channels within free-space optical communication systems. One limiting issue is that, for a given beam size at the transmitter, the beam divergence angle increases with increasing OAM, thus requiring a larger aperture at the receiving optical system if the efficiency of detection is to be maintained. Confusion exists as to whether this divergence scales linarly with, or with the square root of, the beam's OAM. We clarify how both these scaling laws are valid, depending upon whether it is the radius of the Gaussian beam waist or the rms intensity which is kept constant while varying the OAM.Comment: 4 pages, 2 figure

    A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver

    Get PDF
    Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m

    Interconnection network architectures based on integrated orbital angular momentum emitters

    Get PDF
    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance

    Multi-element lenslet array for efficient solar collection at extreme angles of incidence

    Get PDF
    Photovoltaics (PV) are a versatile and compact route to harness solar power. One critical challenge with current PV is preserving the optimal panel orientation angle with respect to the sun for efficient energy conversion. We experimentally demonstrate a bespoke multi-element lenslet array that allows for an increased power collection over a wide field of view by increasing the effective optical interaction length by up to 13 times specifically at large angles of incidence. This design can potentially be retrofitted onto already deployed amorphous silicon solar panels to yield an increased daily power generation by a factor of 1.36 for solar equivalent illumination. We 3D printed an optical proof of concept multi-element lenslet array to confirm an increase in power density for optical rays incident between 40 and 80 degrees. Our design indicates a novel optical approach that could potentially enable increased efficient solar collection in extreme operating conditions such as on the body of planes or the side of buildings

    A deterministic detector for vector vortex states

    Get PDF
    Encoding information in high-dimensional degrees of freedom of photons has led to new avenues in various quantum protocols such as communication and information processing. Yet to fully benefit from the increase in dimension requires a deterministic detection system, e.g., to reduce dimension dependent photon loss in quantum key distribution. Recently, there has been a growing interest in using vector vortex modes, spatial modes of light with entangled degrees of freedom, as a basis for encoding information. However, there is at present no method to detect these non-separable states in a deterministic manner, negating the benefit of the larger state space. Here we present a method to deterministically detect single photon states in a four dimensional space spanned by vector vortex modes with entangled polarisation and orbital angular momentum degrees of freedom. We demonstrate our detection system with vector vortex modes from the |[Formula: see text]| = 1 and |[Formula: see text]| = 10 subspaces using classical and weak coherent states and find excellent detection fidelities for both pure and superposition vector states. This work opens the possibility to increase the dimensionality of the state-space used for encoding information while maintaining deterministic detection and will be invaluable for long distance classical and quantum communication

    Free-space propagation of high dimensional structured optical fields in an urban environment

    Get PDF
    Spatially structured optical fields have been used to enhance the functionality of a wide variety of systems that use light for sensing or information transfer. As higher-dimensional modes become a solution of choice in optical systems, it is important to develop channel models that suitably predict the effect of atmospheric turbulence on these modes. We investigate the propagation of a set of orthogonal spatial modes across a free-space channel between two buildings separated by 1.6 km. Given the circular geometry of a common optical lens, the orthogonal mode set we choose to implement is that described by the Laguerre-Gaussian (LG) field equations. Our study focuses on the preservation of phase purity, which is vital for spatial multiplexing and any system requiring full quantumstate tomography. We present experimental data for the modal degradation in a real urban environment and draw a comparison to recognized theoretical predictions of the link. Our findings indicate that adaptations to channel models are required to simulate the effects of atmospheric turbulence placed on high-dimensional structured modes that propagate over a long distance. Our study indicates that with mitigation of vortex splitting, potentially through precorrection techniques, one could overcome the challenges in a real point-to-point free-space channel in an urban environment
    corecore