29 research outputs found
âFibrous nestsâ in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome
International audienc
Inhibition of Wnt/ÎČ-Catenin Signaling by a Soluble Collagen-Derived Frizzled Domain Interacting with Wnt3a and the Receptors Frizzled 1 and 8
The Wnt/ÎČ-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/ÎČ-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs), which have a cysteine-rich domain (CRD) structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18) inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/ÎČ-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/ÎČ-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced ÎČ-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth
A Cryptic Frizzled Module in Cell Surface Collagen 18 Inhibits Wnt/ÎČâCatenin Signaling
Collagens contain cryptic polypeptide modules that regulate major cell functions, such as cell proliferation or death. Collagen XVIII (C18) exists as three amino terminal end variants with specific amino terminal polypeptide modules. We investigated the function of the variant 3 of C18 (V3C18) containing a frizzled module (FZC18), which carries structural identity with the extracellular cysteine-rich domain of the frizzled receptors. We show that V3C18 is a cell surface heparan sulfate proteoglycan, its topology being mediated by the FZC18 module. V3C18 mRNA was expressed at low levels in 21 normal adult human tissues. Its expression was up-regulated in fibrogenesis and in small well-differentiated liver tumors, but decreased in advanced human liver cancers. Low FZC18 immunostaining in liver cancer nodules correlated with markers of high Wnt/ÎČâcatenin activity. V3C18 (Mrâ=â170 kD) was proteolytically processed into a cell surface FZC18-containing 50 kD glycoprotein precursor that bound Wnt3a in vitro through FZC18 and suppressed Wnt3a-induced stabilization of ÎČâcatenin. Ectopic expression of either FZC18 (35 kD) or its 50 kD precursor inhibited Wnt/ÎČâcatenin signaling in colorectal and liver cancer cell lines, thus downregulating major cell cycle checkpoint gatekeepers cyclin D1 and c-myc and reducing tumor cell growth. By contrast, full-length V3C18 was unable to inhibit Wnt signaling. In summary, we identified a cell-surface signaling pathway whereby FZC18 inhibits Wnt/ÎČâcatenin signaling. The signal, encrypted within cell-surface C18, is released by enzymatic processing as an active frizzled cysteine-rich domain (CRD) that reduces cancer cell growth. Thus, extracellular matrix controls Wnt signaling through a collagen-embedded CRD behaving as a cell-surface sensor of proteolysis, conveying feedback cues to control cancer cell fate
Du pillage au saccage : lâexpertise archĂ©ologique dâurgence de la chapelle Saint-Georges de CĂ©reste (Alpes-de-Haute-Provence)
National audienc
Du pillage au saccage : lâexpertise archĂ©ologique dâurgence de la chapelle Saint-Georges de CĂ©reste (Alpes-de-Haute-Provence)
National audienc