19 research outputs found

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Stereological analysis of the rat and monkey amygdala

    Get PDF
    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings

    Anxiety, concerns and COVID-19: Cross-country perspectives from families and individuals with neurodevelopmental conditions

    Get PDF
    BACKGROUND: The COVID-19 pandemic had a major impact on the mental health and well-being of children with neurodevelopmental conditions (NDCs) and of their families worldwide. However, there is insufficient evidence to understand how different factors (e.g., individual, family, country, children) have impacted on anxiety levels of families and their children with NDCs developed over time. METHODS: We used data from a global survey assessing the experience of 8043 families and their children with NDCs (mean of age (m) = 13.18 years, 37% female) and their typically developing siblings (m = 12.9 years, 45% female) in combination with data from the European Centre for Disease Prevention and Control, the University of Oxford, and the Central Intelligence Agency (CIA) World Factbook, to create a multilevel data set. Using stepwise multilevel modelling, we generated child-, family- and country-related factors that may have contributed to the anxiety levels of children with NDCs, their siblings if they had any, and their parents. All data were reported by parents. RESULTS: Our results suggest that parental anxiety was best explained by family-related factors such as concerns about COVID-19 and illness. Children’s anxiety was best explained by child-related factors such as children’s concerns about loss of routine, family conflict, and safety in general, as well as concerns about COVID-19. In addition, anxiety levels were linked to the presence of pre-existing anxiety conditions for both children with NDCs and their parents. CONCLUSIONS: The present study shows that across the globe there was a raise in anxiety levels for both parents and their children with NDCs because of COVID-19 and that country-level factors had little or no impact on explaining differences in this increase, once family and child factors were considered. Our findings also highlight that certain groups of children with NDCs were at higher risk for anxiety than others and had specific concerns. Together, these results show that anxiety of families and their children with NDCs during the COVID-19 pandemic were predicted by very specific concerns and worries which inform the development of future toolkits and policy. Future studies should investigate how country factors can play a protective role during future crises

    miRNA regulation of gene expression: a predictive bioinformatics analysis in the postnatally developing monkey hippocampus

    Get PDF
    Regulation of gene expression in the postnatally developing hippocampus might contribute to the emergence of selective memory function. However, the mechanisms that underlie the co-regulation of expression of hundreds of genes in different cell types at specific ages in distinct hippocampal regions have yet to be elucidated. By performing genome-wide microarray analyses of gene expression in distinct regions of the monkey hippocampal formation during early postnatal development, we identified one particular group of genes exhibiting a down-regulation of expression, between birth and six months of age in CA1 and after one year of age in CA3, to reach expression levels observed at 6–12 years of age. Bioinformatics analyses using NCBI, miRBase, TargetScan, microRNA.org and Affymetrix tools identified a number of miRNAs capable of regulating the expression of these genes simultaneously in different cell types, i.e., in neurons, astrocytes and oligodendrocytes. Interestingly, sixty-five percent of these miRNAs are conserved across species, from rodents to humans; whereas thirty-five percent are specific to primates, including humans. In addition, we found that some genes exhibiting greater down-regulation of their expression were the predicted targets of a greater number of these miRNAs. In sum, miRNAs may play a fundamental role in the co-regulation of gene expression in different cell types. This mechanism is partially conserved across species, and may thus contribute to the similarity of basic hippocampal characteristics across mammals. This mechanism also exhibits a phylogenetic diversity that may contribute to more subtle species differences in hippocampal structure and function observed at the cellular level

    Postnatal development of the amygdala: a stereological study in rats

    Get PDF
    The amygdala is the central component of a functional brain system regulating fear and emotional behaviors. Studies of the ontogeny of fear behaviors reveal the emergence of distinct fear responses at different postnatal ages. Here, we performed a stereological analysis of the rat amygdala to characterize the cellular changes underlying its normal structural development. Distinct amygdala nuclei exhibited different patterns of postnatal development, which were largely similar to those we have previously shown in monkeys. The combined volume of the lateral, basal, and accessory basal nuclei increased by 113% from 1 to 3 weeks of age and by an additional 33% by 7 months of age. The volume of the central nucleus increased only 37% from 1 to 2 weeks of age and 38% from 2 weeks to 7 months. At 1 week of age, the medial nucleus was 77% of the 7-month-old's volume and exhibited a constant, marginal increase until 7 months. Neuron number did not differ in the amygdala from 1 week to 7 months of age. In contrast, astrocyte number decreased from 3 weeks to 2 months of age in the whole amygdala. Oligodendrocyte number increased in all amygdala nuclei from 3 weeks to 7 months of age. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the rat amygdala is not fully mature for an extended period postnatally. We identified different periods of postnatal development of distinct amygdala nuclei and cellular components, which are concomitant with the ontogeny of different fear and emotional behaviors
    corecore