1,500 research outputs found

    Nonextensive statistical effects on nuclear astrophysics and many-body problems

    Full text link
    Density and temperature conditions in many stellar core (like the solar core) imply the presence of nonideal plasma effects with memory and long-range interactions between particles. This aspect suggests the possibility that the stellar core could not be in a global thermodynamical equilibrium but satisfies the conditions of a metastable state with a stationary (nonextensive) power law distribution function among ions. The order of magnitude of the deviation from the standard Maxwell-Boltzmann distribution can be derived microscopically by considering the presence of random electrical microfields in the stellar plasma. We show that such a nonextensive statistical effect can be very relevant in many nuclear astrophysical problems.Comment: 8 pages, Proceedings of the X Convegno su Problemi di Fisica Nucleare Teoric

    Dynamic Trace-Based Data Dependency Analysis for Parallelization of C Programs

    Get PDF
    Writing parallel code is traditionally considered a difficult task, even when it is tackled from the beginning of a project. In this paper, we demonstrate an innovative toolset that faces this challenge directly. It provides the software developers with profile data and directs them to possible top-level, pipeline-style parallelization opportunities for an arbitrary sequential C program. This approach is complementary to the methods based on static code analysis and automatic code rewriting and does not impose restrictions on the structure of the sequential code or the parallelization style, even though it is mostly aimed at coarse-grained task-level parallelization. The proposed toolset has been utilized to define parallel code organizations for a number of real-world representative applications and is based on and is provided as free source

    Basic-deformed quantum mechanics

    Full text link
    Starting on the basis of qq-symmetric oscillator algebra and on the associate qq-calculus properties, we study a deformed quantum mechanics defined in the framework of the basic square-integrable wave functions space. In this context, we introduce a deformed Schroedinger equation, which satisfies the main quantum mechanics assumptions and admits, in the free case, plane wave functions that can be expressed in terms of the q-deformed exponential, originally introduced in the framework of the basic-hypergeometric functions.Comment: 10 page

    Nonlinear statistical effects in relativistic mean field theory

    Full text link
    We investigate the relativistic mean field theory of nuclear matter at finite temperature and baryon density taking into account of nonlinear statistical effects, characterized by power-law quantum distributions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that such nonlinear statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.Comment: 9 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1005.4643 and arXiv:0912.460

    Temperature dependence of modified CNO nuclear reaction rates in dense stellar plasmas

    Full text link
    We study the dependence of the CNO nuclear reaction rates on temperature, in the range of 107÷10810^7\div 10^8 K, the typical range of temperature evolution from a Sun-like star towards a white dwarf. We show that the temperature dependence of the CNO nuclear reaction rates is strongly affected by the presence of non-extensive statistical effects in the dense stellar core. A very small deviation from the Maxwell-Boltzmann particle distribution implies a relevant enhancement of the CNO reaction rate and could explain the presence of heavier elements (e.g. Fe, Mg) in the final composition of a white dwarf core. Such a behavior is consistent with the recent experimental upper limit to the fraction of energy that the Sun produces via the CNO fusion cycle.Comment: Presented at NEXT2003 (Second International Conference on "News and Expectations in Thermostatistics"), Villasimius (Cagliari)- Italy in 21-28 September 2003. 7 pages including 3 figure

    Nonextensive statistical effects in the quark-gluon plasma formation at relativistic heavy-ion collisions energies

    Full text link
    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.Comment: 12 pages, 5 figure

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    The scenario of two families of compact stars 1. Equations of state, mass-radius relations and binary systems

    Get PDF
    We present several arguments which favor the scenario of two coexisting families of compact stars: hadronic stars and quark stars. Besides the well known hyperon puzzle of the physics of compact stars, a similar puzzle exists also when considering delta resonances. We show that these particles appear at densities close to twice saturation density and must be therefore included in the calculations of the hadronic equation of state. Such an early appearance is strictly related to the value of the L parameter of the symmetry energy that has been found, in recent phenomenological studies, to lie in the range 40<L<6240<L<62 MeV. We discuss also the threshold for the formation of deltas and hyperons for hot and lepton rich hadronic matter. Similarly to the case of hyperons, also delta resonances cause a softening of the equation of state which makes it difficult to obtain massive hadronic stars. Quark stars, on the other hand, can reach masses up to 2.75M2.75 M_{\odot} as predicted by perturbative QCD calculations. We then discuss the observational constraints on the masses and the radii of compact stars. The tension between the precise measurements of high masses and the indications of the existence of very compact stellar objects (with radii of the order of 1010 km) is relieved when assuming that very massive compact stars are quark stars and very compact stars are hadronic stars. Finally, we discuss recent interesting measurements of the eccentricities of the orbits of millisecond pulsars in low mass X-ray binaries. The high values of the eccentricities found in some cases could be explained by assuming that the hadronic star, initially present in the binary system, converts to a quark star due to the increase of its central density.Comment: 11 pages, 9 figures, prepared for the 2015 EPJA Topical Issue on "Exotic Matter in Neutron Stars". Revised versio

    Non-extensive resonant reaction rates in astrophysical plasmas

    Full text link
    We study two different physical scenarios of thermonuclear reactions in stellar plasmas proceeding through a narrow resonance at low energy or through the low energy wing of a wide resonance at high energy. Correspondingly, we derive two approximate analytical formulae in order to calculate thermonuclear resonant reaction rates inside very coupled and non ideal astrophysical plasmas in which non-extensive effects are likely to arise. Our results are presented as simple first order corrective factors that generalize the well known classical rates obtained in the framework of Maxwell-Boltzmann statistical mechanics. As a possible application of our results, we calculate the dependence of the total corrective factor with respect to the energy at which the resonance is located, in an extremely dense and non ideal carbon plasma.Comment: 5 pages, 1 figur
    corecore