8 research outputs found

    Natural variation in acyl editing is a determinant of seed storage oil composition

    Get PDF
    Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl-editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl-editing and this contributes to the genetic control of storage oil composition

    An international bioinformatics infrastructure to underpin the Arabidopsis community

    Get PDF
    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee and the North American Arabidopsis Steering Committee. There are extensive tools and resources for information storage, curation, and retrieval of Arabidopsis data that have been developed over recent years primarily through the activities of The Arabidopsis Information Resource, the Nottingham Arabidopsis Stock Centre, and the Arabidopsis Biological Resource Center, among others. However, the rapid expansion in many data types, the international basis of the Arabidopsis community, and changing priorities of the funding agencies all suggest the need for changes in the way informatics infrastructure is developed and maintained. We propose that there is a need for a single core resource that is integrated into a larger international consortium of investigators. We envision this to consist of a distributed system of data, tools, and resources, accessed via a single information portal and funded by a variety of sources, under shared international management of an International Arabidopsis Informatics Consortium (IAIC). This article outlines the proposal for the development, management, operations, and continued funding for the IAIC
    corecore