547 research outputs found
Layer- and bulk roton excitations of 4He in porous media
We examine the energetics of bulk and layer-roton excitations of 4He in
various porous medial such as aerogel, Geltech, or Vycor, in order to find out
what conclusions can be drawn from experiments on the energetics about the
physisorption mechanism. The energy of the layer-roton minimum depends
sensitively on the substrate strength, thus providing a mechanism for a direct
measurement of this quantity. On the other hand, bulk-like roton excitations
are largely independent of the interaction between the medium and the helium
atoms, but the dependence of their energy on the degree of filling reflects the
internal structure of the matrix and can reveal features of 4He at negative
pressures. While bulk-like rotons are very similar to their true bulk
counterparts, the layer modes are not in close relation to two-dimensional
rotons and should be regarded as a third, completely independent kind of
excitation
Melting of a p-H2 monolayer on a lithium substrate
Adsorption of para-hydrogen films on Alkali metals substrates at low
temperature is studied theoretically by means of Path Integral Monte Carlo
simulations. Realistic potentials are utilized to model the interaction between
two para-hydrogen molecules, as well as between a para-hydrogenmolecule and the
substrate, assumed smooth. Results show that adsorption of para-hydrogen on a
Lithium substrate, the most attractive among the Alkali, occurs through
completion of successive solid adlayers. Each layer has a two-dimensional
density approximatley equal 0.070 inverse square Angstroms. A solid
para-hydrogen monolayer displays a higher degree of confinement, in the
direction perpendicular to the substrate, than a monolayer Helium film, and has
a melting temperature of about 6.5 K. The other Alkali substrates are not
attractive enough to be wetted by molecular hydrogen at low temperature. No
evidence of a possible superfluid phase of para-hydrogen is seen in these
systems.Comment: Scales on the y-axis in Figs. 4,5 and 7 are off by a factor 2 in
published version; corrected her
Excitations in confined helium
We design models for helium in matrices like aerogel, Vycor or Geltech from a
manifestly microscopic point of view. For that purpose, we calculate the
dynamic structure function of 4He on Si substrates and between two Si walls as
a function of energy, momentum transfer, and the scattering angle. The
angle--averaged results are in good agreement with the neutron scattering data;
the remaining differences can be attributed to the simplified model used here
for the complex pore structure of the materials. A focus of the present work is
the detailed identification of coexisting layer modes and bulk--like
excitations, and, in the case of thick films, ripplon excitations. Involving
essentially two--dimensional motion of atoms, the layer modes are sensitive to
the scattering angle.Comment: Phys. Rev. B (2003, in press
Laser-induced fluorescence study of the hydrogen atom formation dynamics in the 248 nm gas-phase photodissociation of vibrational state selected water (H<SUB>2</SUB>O (|04<SUP>-</SUP>>))
The vibrationally-mediated H2O gas-phase photodissociation was studied at a photolysis wavelength of 248 nm. Single rotational states of the |03->|2> and |04.> H2O overtone vibrations were prepared by laser photoexcitation around 720 nm. H atoms formed in the photodissociation of the H2O (|04->J'KaKc = 313) were detected by Lyman-α laser-induced fluorescence spectroscopy with sub-Doppler resolution to determine their translational energy. The present result confirms that in the dissociation process the major part (ca. 93%) of the available energy is released as relative translational energy of the nascent H + OH photofragments, in agreement with earlier complementary measurements (R. L. Vander Wal, J. L. Scott and F. F. Crim, J. Chem. Phys. 94, 1859 (1991)), where the internal excitation of the OH product radical was investigated at different photolysis wavelengths
Quantum sticking, scattering and transmission of 4He atoms from superfluid 4He surfaces
We develop a microscopic theory of the scattering, transmission, and sticking
of 4He atoms impinging on a superfluid 4He slab at near normal incidence, and
inelastic neutron scattering from the slab. The theory includes coupling
between different modes and allows for inelastic processes. We find a number of
essential aspects that must be observed in a physically meaningful and reliable
theory of atom transmission and scattering; all are connected with
multiparticle scattering, particularly the possibility of energy loss. These
processes are (a) the coupling to low-lying (surface) excitations
(ripplons/third sound) which is manifested in a finite imaginary part of the
self energy, and (b) the reduction of the strength of the excitation in the
maxon/roton region
Orientation of Vortices in a Superconducting Thin-Film: Quantitative Comparison of Spin-Polarized Neutron Reflectivity and Magnetization
We present a quantitative comparison of the magnetization measured by
spin-polarized neutron reflectivity (SPNR) and DC magnetometry on a 1370 \AA\
-thick Nb superconducting film. As a function of magnetic field applied in the
film plane, SPNR exhibits reversible behavior whereas the DC magnetization
shows substantial hysteresis. The difference between these measurements is
attributed to a rotation of vortex magnetic field out of the film plane as the
applied field is reduced. Since SPNR measures only the magnetization parallel
to the film plane whereas DC magnetization is strongly influenced by the
perpendicular component of magnetization when there is a slight sample tilt,
combining the two techniques allows one to distinguish two components of
magnetization in a thin film.Comment: 12 pages, 8 figures, It will be printed in PRB, Oct. 200
Evidence for a Self-Bound Liquid State and the Commensurate-Incommensurate Coexistence in 2D He on Graphite
We made heat-capacity measurements of two dimensional (2D) He adsorbed on
graphite preplated with monolayer He in a wide temperature range (0.1 80 mK) at densities higher than that for the 4/7 phase (= 6.8
nm). In the density range of 6.8 8.1 nm, the 4/7
phase is stable against additional He atoms up to 20% and they are promoted
into the third layer. We found evidence that such promoted atoms form a
self-bound 2D Fermi liquid with an approximate density of 1 nm from the
measured density dependence of the -coefficient of heat capacity. We
also show evidence for the first-order transition between the commensurate 4/7
phase and the ferromagnetic incommensurate phase in the second layer in the
density range of 8.1 9.5 nm.Comment: 6 pages, 4 figure
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
Muon capture on light nuclei
This work investigates the muon capture reactions 2H(\mu^-,\nu_\mu)nn and
3He(\mu^-,\nu_\mu)3H and the contribution to their total capture rates arising
from the axial two-body currents obtained imposing the
partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2
and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon
potential, in combination with the Urbana IX three-nucleon potential in the
case of A=3. The weak current consists of vector and axial components derived
in chiral effective field theory. The low-energy constant entering the vector
(axial) component is determined by reproducting the isovector combination of
the trinucleon magnetic moment (Gamow-Teller matrix element of tritium
beta-decay). The total capture rates are 393.1(8) s^{-1} for A=2 and 1488(9)
s^{-1} for A=3, where the uncertainties arise from the adopted fitting
procedure.Comment: 6 pages, submitted to Few-Body Sys
- …