32 research outputs found

    Adjusted Measures for Feature Selection Stability for Data Sets with Similar Features

    Full text link
    For data sets with similar features, for example highly correlated features, most existing stability measures behave in an undesired way: They consider features that are almost identical but have different identifiers as different features. Existing adjusted stability measures, that is, stability measures that take into account the similarities between features, have major theoretical drawbacks. We introduce new adjusted stability measures that overcome these drawbacks. We compare them to each other and to existing stability measures based on both artificial and real sets of selected features. Based on the results, we suggest using one new stability measure that considers highly similar features as exchangeable

    Predicting disease progression in behavioral variant frontotemporal dementia

    Get PDF
    Introduction: The behavioral variant of frontotemporal dementia (bvFTD) is a rare neurodegenerative disease. Reliable predictors of disease progression have not been sufficiently identified. We investigated multivariate magnetic resonance imaging (MRI) biomarker profiles for their predictive value of individual decline. Methods: One hundred five bvFTD patients were recruited from the German frontotemporal lobar degeneration (FTLD) consortium study. After defining two groups ("fast progressors" vs. "slow progressors"), we investigated the predictive value of MR brain volumes for disease progression rates performing exhaustive screenings with multivariate classification models. Results: We identified areas that predict disease progression rate within 1 year. Prediction measures revealed an overall accuracy of 80% across our 50 top classification models. Especially the pallidum, middle temporal gyrus, inferior frontal gyrus, cingulate gyrus, middle orbitofrontal gyrus, and insula occurred in these models. Discussion: Based on the revealed marker combinations an individual prognosis seems to be feasible. This might be used in clinical studies on an individualized progression model

    Ensemble of a subset of kNN classifiers

    Get PDF
    Combining multiple classifiers, known as ensemble methods, can give substantial improvement in prediction performance of learning algorithms especially in the presence of non-informative features in the data sets. We propose an ensemble of subset of kNN classifiers, ESkNN, for classification task in two steps. Firstly, we choose classifiers based upon their individual performance using the out-of-sample accuracy. The selected classifiers are then combined sequentially starting from the best model and assessed for collective performance on a validation data set. We use bench mark data sets with their original and some added non-informative features for the evaluation of our method. The results are compared with usual kNN, bagged kNN, random kNN, multiple feature subset method, random forest and support vector machines. Our experimental comparisons on benchmark classification problems and simulated data sets reveal that the proposed ensemble gives better classification performance than the usual kNN and its ensembles, and performs comparable to random forest and support vector machines

    A feature selection method for classification within functional genomics experiments based on the proportional overlapping score

    Get PDF
    Background: Microarray technology, as well as other functional genomics experiments, allow simultaneous measurements of thousands of genes within each sample. Both the prediction accuracy and interpretability of a classifier could be enhanced by performing the classification based only on selected discriminative genes. We propose a statistical method for selecting genes based on overlapping analysis of expression data across classes. This method results in a novel measure, called proportional overlapping score (POS), of a feature's relevance to a classification task.Results: We apply POS, along-with four widely used gene selection methods, to several benchmark gene expression datasets. The experimental results of classification error rates computed using the Random Forest, k Nearest Neighbor and Support Vector Machine classifiers show that POS achieves a better performance.Conclusions: A novel gene selection method, POS, is proposed. POS analyzes the expressions overlap across classes taking into account the proportions of overlapping samples. It robustly defines a mask for each gene that allows it to minimize the effect of expression outliers. The constructed masks along-with a novel gene score are exploited to produce the selected subset of genes
    corecore