368 research outputs found

    Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity

    Full text link
    Motivated by Weinberg's asymptotic safety scenario, we investigate the gravitational renormalization group flow in the Einstein-Hilbert truncation supplemented by the wave-function renormalization of the ghost fields. The latter induces non-trivial corrections to the beta-functions for Newton's constant and the cosmological constant. The resulting ghost-improved phase diagram is investigated in detail. In particular, we find a non-trivial ultraviolet fixed point in agreement with the asymptotic safety conjecture, which also survives in the presence of extra dimensions. In four dimensions the ghost anomalous dimension at the fixed point is ηc=1.8\eta_c^* = -1.8, supporting space-time being effectively two-dimensional at short distances.Comment: 23 pages, 4 figure

    Scale-dependent metric and causal structures in Quantum Einstein Gravity

    Full text link
    Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) and the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an "intrinsic length" to objects in a QEG spacetime is also discussed.Comment: 52 page

    Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity

    Full text link
    We review recent work on renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values. In particular we argue that QEG effects can account for the entire entropy of the present Universe in the massless sector and give rise to a phase of inflationary expansion. This phase is a pure quantum effect and requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun

    The Accelerated expansion of the Universe as a crossover phenomenon

    Get PDF
    We show that the accelerated expansion of the Universe can be viewed as a crossover phenomenon where the Newton constant and the Cosmological constant are actually scaling operators, dynamically evolving in the attraction basin of a non-Gaussian infrared fixed point, whose existence has been recently discussed. By linearization of the renormalized flow it is possible to evaluate the critical exponents, and it turns out that the approach to the fixed point is ruled by a marginal and a relevant direction. A smooth transition between the standard Friedmann--Lemaitre--Robertson--Walker (FLRW) cosmology and the observed accelerated expansion is then obtained, so that ΩMΩΛ\Omega_M \approx \Omega_\Lambda at late times.Comment: 12 pages, latex, use bibtex. In the final version, the presentation has been improved, and new references have been adde

    On the renormalization group flow of f(R)-gravity

    Full text link
    We use the functional renormalization group equation for quantum gravity to construct a non-perturbative flow equation for modified gravity theories of the form S=ddxgf(R)S = \int d^dx \sqrt{g} f(R). Based on this equation we show that certain gravitational interactions monomials can be consistently decoupled from the renormalization group (RG) flow and reproduce recent results on the asymptotic safety conjecture. The non-perturbative RG flow of non-local extensions of the Einstein-Hilbert truncation including ddxgln(R)\int d^dx \sqrt{g} \ln(R) and ddxgRn\int d^dx \sqrt{g} R^{-n} interactions is investigated in detail. The inclusion of such interactions resolves the infrared singularities plaguing the RG trajectories with positive cosmological constant in previous truncations. In particular, in some RnR^{-n}-truncations all physical trajectories emanate from a Non-Gaussian (UV) fixed point and are well-defined on all RG scales. The RG flow of the ln(R)\ln(R)-truncation contains an infrared attractor which drives a positive cosmological constant to zero dynamically.Comment: 55 pages, 7 figures, typos corrected, references added, version to appear in Phys. Rev.

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data

    Full text link
    The emergence of fractal features in the microscopic structure of space-time is a common theme in many approaches to quantum gravity. In this work we carry out a detailed renormalization group study of the spectral dimension dsd_s and walk dimension dwd_w associated with the effective space-times of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where these generalized dimensions are approximately constant for an extended range of length scales: a classical regime where ds=d,dw=2d_s = d, d_w = 2, a semi-classical regime where ds=2d/(2+d),dw=2+dd_s = 2d/(2+d), d_w = 2+d, and the UV-fixed point regime where ds=d/2,dw=4d_s = d/2, d_w = 4. On the length scales covered by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be in very good agreement with the data. This comparison also provides a natural explanation for the apparent puzzle between the short distance behavior of the spectral dimension reported from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.Comment: 26 pages, 6 figure

    Putting a cap on causality violations in CDT

    Full text link
    The formalism of causal dynamical triangulations (CDT) provides us with a non-perturbatively defined model of quantum gravity, where the sum over histories includes only causal space-time histories. Path integrals of CDT and their continuum limits have been studied in two, three and four dimensions. Here we investigate a generalization of the two-dimensional CDT model, where the causality constraint is partially lifted by introducing weighted branching points, and demonstrate that the system can be solved analytically in the genus-zero sector.Comment: 17 pages, 4 figure

    Fractal Spacetime Structure in Asymptotically Safe Gravity

    Full text link
    Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.Comment: 20 pages, late

    Running Gauge Coupling in Asymptotically Safe Quantum Gravity

    Full text link
    We investigate the non-perturbative renormalization group behavior of the gauge coupling constant using a truncated form of the functional flow equation for the effective average action of the Yang-Mills-gravity system. We find a non-zero quantum gravity correction to the standard Yang-Mills beta function which has the same sign as the gauge boson contribution. Our results fit into the picture according to which Quantum Einstein Gravity (QEG) is asymptotically safe, with a vanishing gauge coupling constant at the non-trivial fixed point.Comment: 27 page
    corecore