14 research outputs found

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    Get PDF
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    Get PDF
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    Get PDF
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    Get PDF
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    Get PDF
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development

    Get PDF
    Background: A critical step in tuberculosis (TB) drug development is the Phase 2a early bactericidal activity (EBA) study which informs if a new drug or treatment has short-term activity in humans. The aim of this work was to present a standardized pharmacometric model-based early bactericidal activity analysis workflow and determine sample sizes needed to detect early bactericidal activity or a difference between treatment arms.Methods: Seven different steps were identified and developed for a standardized pharmacometric model-based early bactericidal activity analysis approach. Non-linear mixed effects modeling was applied and different scenarios were explored for the sample size calculations. The sample sizes needed to detect early bactericidal activity given different TTP slopes and associated variability was assessed. In addition, the sample sizes needed to detect effect differences between two treatments given the impact of different TTP slopes, variability in TTP slope and effect differences were evaluated.Results: The presented early bactericidal activity analysis approach incorporates estimate of early bactericidal activity with uncertainty through the model-based estimate of TTP slope, variability in TTP slope, impact of covariates and pharmacokinetics on drug efficacy. Further it allows for treatment comparison or dose optimization in Phase 2a. To detect early bactericidal activity with 80% power and at a 5% significance level, 13 and 8 participants/arm were required for a treatment with a TTP-EBA0-14 as low as 11 h when accounting for variability in pharmacokinetics and when variability in TTP slope was 104% [coefficient of variation (CV)] and 22%, respectively. Higher sample sizes are required for smaller early bactericidal activity and when pharmacokinetics is not accounted for. Based on sample size determinations to detect a difference between two groups, TTP slope, variability in TTP slope and effect difference between two treatment arms needs to be considered.Conclusion: In conclusion, a robust standardized pharmacometric model-based EBA analysis approach was established in close collaboration between microbiologists, clinicians and pharmacometricians. The work illustrates the importance of accounting for covariates and drug exposure in EBA analysis in order to increase the power of detecting early bactericidal activity for a single treatment arm as well as differences in EBA between treatments arms in Phase 2a trials of TB drug development

    Model-Informed Precision Dosing of Linezolid in Patients with Drug-Resistant Tuberculosis

    No full text
    Linezolid is an efficacious medication for the treatment of drug-resistant tuberculosis but has been associated with serious safety issues that can result in treatment interruption. The objectives of this study were thus to build a population pharmacokinetic model and to use the developed model to establish a model-informed precision dosing (MIPD) algorithm enabling safe and efficacious dosing in patients with multidrug- and extensively drug-resistant tuberculosis. Routine hospital therapeutic drug monitoring data, collected from 70 tuberculosis patients receiving linezolid, was used for model development. Efficacy and safety targets for MIPD were the ratio of unbound area under the concentration versus time curve between 0 and 24 h over minimal inhibitory concentration (fAUC0&ndash;24h/MIC) above 119 and unbound plasma trough concentration (fCmin) below 1.38 mg/L, respectively. Model building was performed in NONMEM 7.4.3. The final population pharmacokinetic model consisted of a one-compartment model with transit absorption and concentration- and time-dependent auto-inhibition of elimination. A flat dose of 600 mg once daily was appropriate in 67.2% of the simulated patients from an efficacy and safety perspective. Using the here developed MIPD algorithm, the proportion of patients reaching the efficacy and safety target increased to 81.5% and 88.2% using information from two and three pharmacokinetic sampling occasions, respectively. This work proposes an MIPD approach for linezolid and suggests using three sampling occasions to derive an individualized dose that results in adequate efficacy and fewer safety concerns compared to flat dosing

    Derivation and Clinical Utility of Safety Targets for Linezolid-Related Adverse Events in Drug-Resistant Tuberculosis Treatment

    No full text
    Long-term usage of linezolid can result in adverse events such as peripheral neuropathy, anemia and thrombocytopenia. Therapeutic drug monitoring data from 75 drug-resistant tuberculosis patients treated with linezolid were analyzed using a time-to-event (TTE) approach for peripheral neuropathy and anemia and indirect response modelling for thrombocytopenia. Different time-varying linezolid pharmacokinetic exposure indices (AUC0–24h,ss, Cav, Cmax and Cmin) and patient characteristics were investigated as risk factors. A treatment duration shorter than 3 months was considered dropout and was modelled using a TTE approach. An exposure–response relationship between linezolid Cmin and both peripheral neuropathy and anemia was found. The exposure index which best described the development of thrombocytopenia was AUC0–24h. The final TTE dropout model indicated an association between linezolid Cmin and dropout. New safety targets for each adverse event were proposed which can be used for individualized linezolid dosing. According to the model predictions at 6 months of treatment, a Cmin of 0.11 mg/L and 1.4 mg/L should not be exceeded to keep the cumulative probability to develop anemia and peripheral neuropathy below 20%. The AUC0–24h should be below 111 h·mg/L or 270 h·mg/L to prevent thrombocytopenia and severe thrombocytopenia, respectively. A clinical utility assessment showed that the currently recommended dose of 600 mg once daily is safer compared to a 300 mg BID dosing strategy considering all four safety endpoints.</p

    Seasonal influence on respiratory tract infection severity including COVID‐19 quantified through Markov Chain modeling

    No full text
    Abstract Respiratory tract infections (RTIs) are a burden to global health, but their characterization is complicated by the influence of seasonality on incidence and severity. The Re‐BCG‐CoV‐19 trial (NCT04379336) assessed BCG (re)vaccination for protection from coronavirus disease 2019 (COVID‐19) and recorded 958 RTIs in 574 individuals followed over 1 year. We characterized the probability of RTI occurrence and severity using a Markov model with health scores (HSs) for four states of symptom severity. Covariate analysis on the transition probability between HSs explored the influence of demographics, medical history, severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2), or influenza vaccinations, which became available during the trial, SARS‐CoV‐2 serology, and epidemiology‐informed seasonal influence of infection pressure represented as regional COVID‐19 pandemic waves, as well as BCG (re)vaccination. The infection pressure reflecting the pandemic waves increased the risk of RTI symptom development, whereas the presence of SARS‐CoV‐2 antibodies protected against RTI symptom development and increased the probability of symptom relief. Higher probability of symptom relief was also found in participants with African ethnicity and with male biological gender. SARS‐CoV‐2 or influenza vaccination reduced the probability of transitioning from mild to healthy symptoms. Model diagnostics over calendar‐time indicated that COVID‐19 cases were under‐reported during the first wave by an estimated 2.76‐fold. This trial was performed during the initial phase of the COVID‐19 pandemic in South Africa and the results reflect that situation. Using this unique clinical dataset of prospectively studied RTIs over the course of 1 year, our Markov Chain model was able to capture risk factors for RTI development and severity, including epidemiology‐informed infection pressure

    Reproducibility in pharmacometrics applied in a phase III trial of BCG-vaccination for COVID-19

    No full text
    Abstract Large clinical trials often generate complex and large datasets which need to be presented frequently throughout the trial for interim analysis or to inform a data safety monitory board (DSMB). In addition, reliable and traceability are required to ensure reproducibility in pharmacometric data analysis. A reproducible pharmacometric analysis workflow was developed during a large clinical trial involving 1000 participants over one year testing Bacillus Calmette-GuĂ©rin (BCG) (re)vaccination in coronavirus disease 2019 (COVID-19) morbidity and mortality in frontline health care workers. The workflow was designed to review data iteratively during the trial, compile frequent reports to the DSMB, and prepare for rapid pharmacometric analysis. Clinical trial datasets (n = 41) were transferred iteratively throughout the trial for review. An RMarkdown based pharmacometric processing script was written to automatically generate reports for evaluation by the DSMB. Reports were compiled, reviewed, and sent to the DSMB on average three days after the data cut-off, reflecting the trial progress in real-time. The script was also utilized to prepare for the trial pharmacometric analyses. The same source data was used to create analysis datasets in NONMEM format and to support model script development. The primary endpoint analysis was completed three days after data lock and unblinding, and the secondary endpoint analyses two weeks later. The constructive collaboration between clinical, data management, and pharmacometric teams enabled this efficient, timely, and reproducible pharmacometrics workflow
    corecore