2,270 research outputs found

    Band offsets in Si/Si1–x–yGexCy heterojunctions measured by admittance spectroscopy

    Get PDF
    We have used admittance spectroscopy to measure conduction-band and valence-band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Valence-band offsets measured for Si/Si1–xGex heterojunctions were in excellent agreement with previously reported values. Incorporation of C into Si1–x–yGexCy lowers the valence- and conduction-band-edge energies compared to those in Si1–xGex with the same Ge concentration. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicate that the band alignment is Type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results

    Electronic properties of Si/Si1–x–yGexCy heterojunctions

    Get PDF
    We have used admittance spectroscopy and deep-level transient spectroscopy to characterize electronic properties of Si/Si1–x–yGexCy heterostructures. Band offsets measured by admittance spectroscopy for compressively strained Si/Si1–x–yGexCy heterojunctions indicate that incorporation of C into Si1–x–yGexCy lowers both the valence- and conduction-band edges compared to those in Si1–xGex by an average of 107 ± 6 meV/% C and 75 ± 6 meV/% C, respectively. Combining these measurements indicates that the band alignment is type I for the compositions we have studied, and that these results are consistent with previously reported results on the energy band gap of Si1–x–yGexCy and with measurements of conduction band offsets in Si/Si1–yCy heterojunctions. Several electron traps were observed using deep-level transient spectroscopy on two n-type heterostructures. Despite the presence of a significant amount of nonsubstitutional C (0.29–1.6 at. %), none of the peaks appear attributable to previously reported interstitial C levels. Possible sources for these levels are discussed

    Measurement of band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions

    Get PDF
    Realization of group IV heterostructure devices requires the accurate measurement of the energy band offsets in Si/Si1–xGex and Si/Si1–x–yGexCy heterojunctions. Using admittance spectroscopy, we have measured valence-band offsets in Si/Si1–xGex heterostructures and conduction-band and valence-band offsets in Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Measured Si/Si1–xGex valence-band offsets were in excellent agreement with previously reported values. For Si/Si1–x–yGexCy our measurements yielded a conduction-band offset of 100 ± 11 meV for a n-type Si/Si0.82Ge0.169C0.011 heterojunction and valence-band offsets of 118 ± 12 meV for a p-type Si/Si0.79Ge0.206C0.004 heterojunction and 223 ± 20 meV for a p-type Si/Si0.595Ge0.394C0.011 heterojunction. Comparison of our measured band offsets with previously reported measurements of energy band gaps in Si1–x–yGexCy and Si1–yCy alloy layers indicates that the band alignment is type I for the compositions we have studied and that our measured band offsets are in quantitative agreement with these previously reported results

    Deep-level transient spectroscopy of Si/Si1–x–yGexCy heterostructures

    Get PDF
    Deep-level transient spectroscopy was used to measure the activation energies of deep levels in n-type Si/Si1–x–yGexCy heterostructures grown by solid-source molecular-beam epitaxy. Four deep levels have been observed at various activation energies ranging from 231 to 405 meV below the conduction band. The largest deep-level concentration observed was in the deepest level and was found to be approximately 2 × 10^15 cm^–3. Although a large amount of nonsubstitutional C was present in the alloy layers (1–2 at. %), no deep levels were observed at any energy levels that, to the best of our knowledge, have been previously attributed to interstitial C

    Stabilizing the surface morphology of Si1–x–yGexCy/Si heterostructures grown by molecular beam epitaxy through the use of a silicon-carbide source

    Get PDF
    Si1–x–yGexCy/Si superlattices were grown by solid-source molecular beam epitaxy using silicon carbide as a source of C. Samples consisting of alternating layers of nominally 25 nm Si1–x–yGexCy and 35 nm Si for 10 periods were characterized by high-resolution x-ray diffraction, transmission electron microscopy (TEM), and Rutherford backscattering spectrometry to determine strain, thickness, and composition. C resonance backscattering and secondary ion mass spectrometries were used to measure the total C concentration in the Si1–x–yGexCy layers, allowing for an accurate determination of the substitutional C fraction to be made as a function of growth rate for fixed Ge and substitutional C compositions. For C concentrations close to 1%, high-quality layers were obtained without the use of Sb-surfactant mediation. These samples were found to be structurally perfect to a level consistent with cross-sectional TEM (< 10^7 defects/cm^2) and showed considerably improved homogeneity as compared with similar structures grown using graphite as the source for C. For higher Ge and C concentrations, Sb-surfactant mediation was found to be required to stabilize the surface morphology. The maximum value of substitutional C concentration, above which excessive generation of stacking fault defects caused polycrystalline and/or amorphous growth, was found to be approximately 2.4% in samples containing between 25 and 30% Ge. The fraction of substitutional C was found to decrease from roughly 60% by a factor of 0.86 as the Si1–x–yGexCy growth rate increased from 0.1 to 1.0 nm/s

    Assessment of Modeling Strategies for Lightly Reinforced Concrete Shear Walls

    Get PDF
    element detailing, which suggest they are susceptible to brittle, compression-controlled failure modes, and deemed deficient by industry practitioners. Researchers at the California Polytechnic State University [1], San Luis Obispo (Cal Poly), recently tested a slender RC wall with vertical and horizontal reinforcement ratios approaching ACI 318-14 [2] code minimum (ρl= ρh= 0.37%) and no boundary elements. Results from this wall test will be presented and contrasted with a set of lightly reinforced walls, specimens C1-C3 tested by Lu et al. [3] at the University of Auckland, New Zealand, with higher levels of reinforcement (ρl= 0.53%). This paper will examine the Cal Poly and Lu et al. walls by comparing experimental test results. It will also comment on the accuracy of current modelling strategies used by industry practitioners to estimate the strength, stiffness, and ductility of existing lightly reinforced walls. Finally, it will make recommendations for the necessary model calibrations to achieve accurate prediction of the response of the lightly reinforced walls using PERFORM-3D [4], as a refinement of Lowes et al. [5] modeling recommendations for this wall type. The overall goal with this study is to facilitate accurate modeling that will provide detailed understanding of the wall response, and to inform the industry practitioner about the need for retrofitting to meet modern standards

    OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION

    Get PDF
    This work presents a three-dimensional (3-D) numerical and experimental geometric optimization study to maximize the total heat transfer rate between a bundle of finned tubes in a given volume and a given external flow both for circular and elliptic arrangements, for general staggered configurations. The optimization procedure started by recognizing the design limited space availability as a fixed volume constraint. The experimental results were obtained for circular and elliptic configurations with a fixed number of tubes (12), starting with an equilateral triangle configuration, which fitted uniformly into the fixed volume with a resulting maximum dimensionless tube-to-tube spacing S/2b = 1.5, where S is the actual spacing and b is the smaller ellipse semi-axis. Several experimental configurations were built by reducing the tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid in the laminar regime, for 125 and 100 Re 2b , where 2b is the ellipses smaller axis length. Circular and elliptic arrangements with the same flow obstruction cross-sectional area were compared on the basis of maximum total heat transfer. This criterion allows one to quantify the heat transfer gain in the most isolated way possible, by studying arrangements with equivalent total pressure drops independently of the tube cross section shape. This paper reports three-dimensional (3- D) numerical optimization results for finned circular and elliptic tubes arrangements, which are validated by direct comparison with experimental measurements with good agreement. Global optima with respect to tube-to-tube spacing, eccentricity and fin-tofin spacing ( 0.5 e 0.5, S/2b and 06 . 0 f for 125 and 100 Re 2b , respectively) were found and reported in general dimensionless variables. A relative heat transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat transfer gain, combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the circular one, show the elliptical arrangement has the potential for a considerably better overall performance and lower cost than the traditional circular geometry

    The role of the novel D2/β2-agonist, Viozan™ (sibenadet HCl), in the treatment of symptoms of chronic obstructive pulmonary disease: results of a large-scale clinical investigation

    Get PDF
    AbstractViozan™ (sibenadet HCl, AR-C68397AA) is a novel dual D2 dopamine receptor, β2-adrenoceptor agonist, developed specifically to treat the key symptoms of chronic obstructive pulmonary disease (COPD), breathlessness, cough and sputum. The dual sensory nerve modulation and bronchodilator effects of sibenadet have been demonstrated in initial dose-ranging studies of patients with COPD and large-scale clinical evaluation has now been completed. Sibenadet efficacy was determined by assessing symptomatic changes, as defined by the novel assessment tool, the Breathlessness, Cough and Sputum Scale (BCSS©). The findings of two placebo-controlled studies are reported.These multicentre, double-blind, placebo-controlled studies recruited over 2000 patients with stable COPD, randomized to receive sibenadet (500 μg) or placebo, pressurized metered-dose inhaler (pMDI) (three times daily) for a period of 12 or 26 weeks. Diary cards were completed daily by patients throughout the study to record BCSS scores, peak expiratory flow (PEF), study drug and rescue bronchodilator usage, changes in concomitant medication and adverse events. The primary endpoints were defined as change from baseline to the final 4 weeks of the treatment period in mean BCSS total score, and forced expiratory volume in one second (FEV1) measured 1 hour after administration of the final dose of study drug and expressed as a percentage of the predicted FEV1. In addition, clinic assessments were made to determine changes in pulmonary function, health-related quality of life, perception of treatment efficacy and adverse events.Despite initial improvements in mean daily BCSS total scores in patients receiving sibenadet, the difference in the change from baseline to the final 4 weeks of the treatment period between the two treatment groups was neither statistically significant, nor considered to be of clinical importance. Although marked bronchodilator activity was seen early on with sibenadet treatment, the duration of effect diminished as the studies progressed. Sibenadet use was not associated with any safety concerns.These studies, utilizing the novel BCSS, have clearly illustrated that, despite initial symptomatic improvement with sibenadet therapy, this clinical benefit was not sustained over the course of the study

    Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles

    Full text link
    [EN] This work introduces analytical and numerical approaches to compute the incipient motion of ellipsoidal sediment particles. Initiation of motion of spherical particles is dominated by rolling mode. However, solutions for initiation of motion for non-spherical grains have to incorporate rolling, sliding, and mixed modes. The proposed approaches include a wide variety of shapes and inclinations that represent realistic configurations of sediment bed layers. The numerical procedure is based on the discrete element method, simulating the micro-mechanics of the sediment as an aggregate of rigid ellipsoids interacting by contact. The numerical solution covers a range of incipient movements that cannot be covered by the analytical approach. Hence, some trapped modes observed in analytical calculations are complemented by the numerical computation of threshold stresses. The main results are organized as novel extended Shields diagrams for non-spherical grains, where non-dimensional critical shear stress is represented in terms of friction Reynolds number.This work was supported by the Ministerio de Ciencia e Innovación Grant [#BIA-2012-32918 and #BIA-2015-64994-P (MINECO/FEDER)].Bravo, R.; Ortiz, P.; Pérez-Aparicio, JL. (2018). Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles. Journal of Hydraulic Research. 56(1):29-43. https://doi.org/10.1080/00221686.2017.1289263S2943561Belytschko, T., & Neal, M. O. (1991). Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering, 31(3), 547-572. doi:10.1002/nme.1620310309Bravo, R., Ortiz, P., & Pérez-Aparicio, J. L. (2014). Incipient sediment transport for non-cohesive landforms by the discrete element method (DEM). Applied Mathematical Modelling, 38(4), 1326-1337. doi:10.1016/j.apm.2013.08.010Bravo, R., Pérez-Aparicio, J. L., & Gómez-Hernández, J. J. (2015). Numerical sedimentation particle-size analysis using the Discrete Element Method. Advances in Water Resources, 86, 58-72. doi:10.1016/j.advwatres.2015.09.024Bravo, R., Pérez-Aparicio, J. L., & Laursen, T. A. (2012). An energy consistent frictional dissipating algorithm for particle contact problems. International Journal for Numerical Methods in Engineering, 92(9), 753-781. doi:10.1002/nme.4346Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993-2029. doi:10.1029/96wr03190Cheng, N.-S., & Chiew, Y.-M. (1999). Incipient sediment motion with upward seepage. Journal of Hydraulic Research, 37(5), 665-681. doi:10.1080/00221689909498522Chiew, Y.-M., & Parker, G. (1994). Incipient sediment motion on non-horizontal slopes. Journal of Hydraulic Research, 32(5), 649-660. doi:10.1080/00221689409498706Derksen, J. J. (2015). Simulations of granular bed erosion due to a mildly turbulent shear flow. Journal of Hydraulic Research, 53(5), 622-632. doi:10.1080/00221686.2015.1077354Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 23(5), 399-417. doi:10.1016/s0307-904x(98)10081-1Dey, S. (2003). Threshold of sediment motion on combined transverse and longitudinal sloping beds. Journal of Hydraulic Research, 41(4), 405-415. doi:10.1080/00221680309499985Dey, S., Sarker, H. K. D., & Debnath, K. (1999). Sediment Threshold under Stream Flow on Horizontal and Sloping Beds. Journal of Engineering Mechanics, 125(5), 545-553. doi:10.1061/(asce)0733-9399(1999)125:5(545)Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361-365. doi:10.1016/j.powtec.2007.08.021James, C. S. (1990). Prediction of entrainment conditions for nonuniform, noncohesive sediments. Journal of Hydraulic Research, 28(1), 25-41. doi:10.1080/00221689009499145Ji, C., Munjiza, A., Avital, E., Ma, J., & Williams, J. J. R. (2013). Direct numerical simulation of sediment entrainment in turbulent channel flow. Physics of Fluids, 25(5), 056601. doi:10.1063/1.4807075Klamkin, M. S. (1971). Elementary Approximations to the Area of N-Dimensional Ellipsoids. The American Mathematical Monthly, 78(3), 280. doi:10.2307/2317530Mandø, M., & Rosendahl, L. (2010). On the motion of non-spherical particles at high Reynolds number. Powder Technology, 202(1-3), 1-13. doi:10.1016/j.powtec.2010.05.001MILLER, M. C., McCAVE, I. N., & KOMAR, P. D. (1977). Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527. doi:10.1111/j.1365-3091.1977.tb00136.xWan Mohtar, W. H. M., & Munro, R. J. (2013). Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence. Physics of Fluids, 25(1), 015103. doi:10.1063/1.4774341Ortiz, P., & Smolarkiewicz, P. K. (2006). Numerical simulation of sand dune evolution in severe winds. International Journal for Numerical Methods in Fluids, 50(10), 1229-1246. doi:10.1002/fld.1138Ortiz, P., & Smolarkiewicz, P. K. (2009). Coupling the dynamics of boundary layers and evolutionary dunes. Physical Review E, 79(4). doi:10.1103/physreve.79.041307Van Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. doi:10.1061/(asce)0733-9429(1984)110:10(1431)Shi, G.-H., & Goodman, R. E. (1985). Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6), 541-556. doi:10.1002/nag.1610090604Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement (Tech. Rep.). Lab. for Hydraulic Water Resources.Wellmann, C., Lillie, C., & Wriggers, P. (2008). A contact detection algorithm for superellipsoids based on the common‐normal concept. Engineering Computations, 25(5), 432-442. doi:10.1108/02644400810881374Wiberg, P. L., & Smith, J. D. (1985). A theoretical model for saltating grains in water. Journal of Geophysical Research, 90(C4), 7341. doi:10.1029/jc090ic04p0734
    corecore