123 research outputs found

    Diarylureas: New Promising Small Molecules against Streptococcus mutans for the Treatment of Dental Caries

    Get PDF
    Dental caries is a biofilm-mediated disease that represents a worldwide oral health issue. Streptococcus mutans has been ascertained as the main cariogenic pathogen responsible for human dental caries, with a high ability to form biofilms, regulated by the quorum sensing. Diarylureas represent a class of organic compounds that show numerous biological activities, including the antimicrobial one. Two small molecules belonging to this class, specifically to diphenylureas, BPU (1,3-bis[3,5-bis(trifluoromethyl)phenyl]urea) and DMTU (1,3-di-m-tolyl-urea), showed interesting results in studies regarding the antimicrobial activity against the cariogenic bacterium S. mutans. Since there are not many antimicrobials used for the prevention and treatment of caries, further studies on these two interesting compounds and other diarylureas against S. mutans may be useful to design new effective agents for the treatment of caries with generally low cytotoxicit

    Silk fibroin microgels as a platform for cell microencapsulation

    Get PDF
    : Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration

    The acetyltransferase p300 is recruited in trans to multiple enhancer sites by lncSmad7

    Get PDF
    The histone acetyltransferase p300 (also known as KAT3B) is a general transcriptional coactivator that introduces the H3K27ac mark on enhancers triggering their activation and gene transcription. Genome-wide screenings demonstrated that a large fraction of long non-coding RNAs (lncRNAs) plays a role in cellular processes and organ development although the underlying molecular mechanisms remain largely unclear (1,2). We found 122 lncRNAs that interacts directly with p300. In depth analysis of one of these, lncSmad7, is required to maintain ESC self-renewal and it interacts to the C-terminal domain of p300. lncSmad7 also contains predicted RNA-DNA Hoogsteen forming base pairing. Combined Chromatin Isolation by RNA precipitation followed by sequencing (ChIRP-seq) together with CRISPR/Cas9 mutagenesis of the target sites demonstrate that lncSmad7 binds and recruits p300 to enhancers in trans, to trigger enhancer acetylation and transcriptional activation of its target genes. Thus, these results unveil a new mechanism by which p300 is recruited to the genome

    Metabolic and anthropometric changes in early breast cancer patients receiving adjuvant therapy

    Get PDF
    Weight gain and metabolic changes have been related to survival of early breast cancer patients (EBC). ''However, factors influencing metabolism post-diagnosis are not fully understood. We measured anthropometric [body mass index (BMI), body weight, waist and hip circumferences, and waist-to-hip ratio] and metabolic (levels of insulin, glucose, H1Ac, total, HDL, and LDL cholesterol, triglycerides, and the homeostasis model assessment score [HOMA]) parameters in 433 pre- and post-menopausal women with EBC at diagnosis and 3, 6, 9, 12, and 24 months thereafter. At diagnosis, compared with post-menopausal women, pre-menopausal patients were more likely to be leaner and to have a lower BMI, smaller waist and hip circumferences, and waist-to-hip ratio. They had also lower glucose, HbA1c, and triglyceride levels and a lower HOMA score. Furthermore, they were more likely to have an estrogen- and/or progesterone-positive tumor and a higher proliferating breast cancer. During the first two post-diagnosis years, all women showed a significant increase of weight (+0.72 kg/year, P < 0.001), waist circumference (+1.53 cm/year, P < 0.001), and plasma levels of LDL cholesterol (+5.4 mg/dl per year, P = 0.045) and triglycerides (+10.73 mg/dl per year, P = 0.017). In patients receiving chemotherapy only, there was a significant increase in hip circumference (+3.16 cm/year, P < 0.001) and plasma cholesterol levels (+21.26 mg/dl per year, P < 0.001). We showed that weight, body fat distribution, and lipid profile changed in EBC patients receiving adjuvant therapy. These changes occurred during the first 2 years after diagnosis and were not specifically related to chemotherapy, menopausal status, or initial body weight

    Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis

    Get PDF
    ObjectiveThe notion that cerebellar pathology may contribute to cognitive impairment in ALS, especially in patients with C9orf72 repeated expansion, has been inconsistently reported. This study aimed exploring the relationship between cerebellar involvement, cognitive impairment and C9orf72 repeated expansion of patients with ALS.MethodsQuantitative in vivo assessment of cerebellar lobules has been investigated in 66 non-demented patients with ALS and 28 healthy controls (HCs). Pathologic C9orf72 repeated expansion was found in 13 patients. Mild cognitive and/or behavioral impairment was diagnosed in 22 C9orf72 negative ALS patients. Measures of cortical volume (CV) and cortical thickness (CT) of cerebellar lobules of all participants were used for Principal Component Analysis (PCA) to identify clusters of lobular measures highly correlated with each other. PCA outcomes were used for between group comparisons and correlation analyses with neuropsychological and clinical features.ResultsDisease severity measured with ALS functional rating scale and index of disease progression rate significantly correlated with CV reduction of the second PCA cluster loading CV measures of anterior lobules. In all patients, cognitive impairment, measured with verbal fluency, was related to CV reduction of the third cluster comprising posterior lobules. No specific cortical thinning or volume reduction of cerebellar clustering patterns could be detected in ALS subgroups.ConclusionOur data show that specific patterns of subregional cerebellar involvement are associated with physical disability or cognitive impairment in ALS, in line with the topographic organization of the cerebellum. However, there was no specific correlation between cerebellar degeneration and cognitive syndromes or C9orf72 mutations

    Charcot-Marie-Tooth Type 2B: A New Phenotype Associated with a Novel RAB7A Mutation and Inhibited EGFR Degradation

    Get PDF
    The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking diculties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A&gt;G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family

    Metabolic control of DNA methylation in naive pluripotent cells.

    Get PDF
    Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions

    Methylated HBHA produced in <i>M. smegmatis</i> discriminates between active and non-active tuberculosis disease among RD1-responders

    Get PDF
    Background. A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-γ; response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-γ response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT. Methodology/Principal Findings. 87 individuals at different stages of TB who scored positive to QFT-IT were selected. IFN-γ response to in vitro whole blood stimulation with rHBHAms was evaluated by short-term and long-term tests and detected by ELISA or flow cytometry. We demonstrated that the IFN-γ response to rHBHAms is mediated by CD4+ T-cells with an effector-memory phenotype. This response, evaluated by short-term-tests, is significantly lower in active TB than in remote LTBI (p = 0.0010) and past TB (p = 0.0152). These results were confirmed by long-term tests. The qualitative data confirmed that IFN-γ responses higher than the cut-off point identified by ROC analysis are associated with the status of non-active disease. Conclusions. In this study we show that the T-cell response to a recombinant and methylated HBHA of Mtb produced in M. smegmatis is useful to discriminate between active and non-active TB disease among those responsive to QFT-IT in a whole blood system. Further studies are needed to improve the accuracy of the assay
    corecore