992 research outputs found

    In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

    Get PDF
    The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins

    Do (and say) as I say: Linguistic adaptation in human-computer dialogs

    Get PDF
    © Theodora Koulouri, Stanislao Lauria, and Robert D. Macredie. This article has been made available through the Brunel Open Access Publishing Fund.There is strong research evidence showing that people naturally align to each other’s vocabulary, sentence structure, and acoustic features in dialog, yet little is known about how the alignment mechanism operates in the interaction between users and computer systems let alone how it may be exploited to improve the efficiency of the interaction. This article provides an account of lexical alignment in human–computer dialogs, based on empirical data collected in a simulated human–computer interaction scenario. The results indicate that alignment is present, resulting in the gradual reduction and stabilization of the vocabulary-in-use, and that it is also reciprocal. Further, the results suggest that when system and user errors occur, the development of alignment is temporarily disrupted and users tend to introduce novel words to the dialog. The results also indicate that alignment in human–computer interaction may have a strong strategic component and is used as a resource to compensate for less optimal (visually impoverished) interaction conditions. Moreover, lower alignment is associated with less successful interaction, as measured by user perceptions. The article distills the results of the study into design recommendations for human–computer dialog systems and uses them to outline a model of dialog management that supports and exploits alignment through mechanisms for in-use adaptation of the system’s grammar and lexicon

    Plasma deoxysphingolipids: a novel class of biomarkers for the metabolic syndrome?

    Get PDF
    Aims/hypothesis: Sphingolipid synthesis is typically initiated by the conjugation of l-serine and palmitoyl-CoA, a reaction catalysed by serine palmitoyltransferase (SPT). SPT can also metabolise other acyl-CoAs (C12 to C18) and other amino acids such as l-alanine and glycine, giving rise to a spectrum of atypical sphingolipids. Here, we aimed to identify changes in plasma levels of these atypical sphingolipids to explore their potential as biomarkers in the metabolic syndrome and diabetes. Methods: We compared the plasma profiles of ten sphingoid bases in healthy individuals with those of patients with the metabolic syndrome but not diabetes, and diabetic patients (n = 25 per group). The results were verified in a streptozotocin (STZ) rat model. Univariate and multivariate statistical analyses were used. Results: Deoxysphingolipids (dSLs) were significantly elevated ( p=5×10−6 p = {5} \times {1}{0^{{ - {6}}}} ) in patients with the metabolic syndrome (0.11 ± 0.04ÎŒmol/l) compared with controls (0.06 ± 0.02ÎŒmol/l) but did not differ between the metabolic syndrome and diabetes groups. Levels of C16-sphingosine-based sphingolipids were significantly lowered in diabetic patients but not in patients with the metabolic syndrome but without diabetes (p = 0.008). Significantly elevated dSL levels were also found in the plasma and liver of STZ rats. A principal component analysis revealed a similar or even closer association of dSLs with diabetes and the metabolic syndrome in comparison with the established biomarkers. Conclusions/interpretation: We showed that dSLs are significantly elevated in patients with type 2 diabetes mellitus and non-diabetic metabolic syndrome compared with healthy controls. They may, therefore, be useful novel biomarkers to improve risk prediction and therapy monitoring in these patient

    Antiproliferative Activity Predictor: A New Reliable In Silico Tool for Drug Response Prediction against NCI60 Panel

    Get PDF
    In vitro antiproliferative assays still represent one of the most important tools in the anticancer drug discovery field, especially to gain insights into the mechanisms of action of anticancer small molecules. The NCI-DTP (National Cancer Institute Developmental Therapeutics Program) undoubtedly represents the most famous project aimed at rapidly testing thousands of compounds against multiple tumor cell lines (NCI60). The large amount of biological data stored in the National Cancer Institute (NCI) database and many other databases has led researchers in the fields of computational biology and medicinal chemistry to develop tools to predict the anticancer properties of new agents in advance. In this work, based on the available antiproliferative data collected by the NCI and the manipulation of molecular descriptors, we propose the new in silico Antiproliferative Activity Predictor (AAP) tool to calculate the GI50 values of input structures against the NCI60 panel. This ligand-based protocol, validated by both internal and external sets of structures, has proven to be highly reliable and robust. The obtained GI50 values of a test set of 99 structures present an error of less than ±1 unit. The AAP is more powerful for GI50 calculation in the range of 4–6, showing that the results strictly correlate with the experimental data. The encouraging results were further supported by the examination of an in-house database of curcumin analogues that have already been studied as antiproliferative agents. The AAP tool identified several potentially active compounds, and a subsequent evaluation of a set of molecules selected by the NCI for the one-dose/five-dose antiproliferative assays confirmed the great potential of our protocol for the development of new anticancer small molecules. The integration of the AAP tool in the free web service DRUDIT provides an interesting device for the discovery and/or optimization of anticancer drugs to the medicinal chemistry community. The training set will be updated with new NCI-tested compounds to cover more chemical spaces, activities, and cell lines. Currently, the same protocol is being developed for predicting the TGI (total growth inhibition) and LC50 (median lethal concentration) parameters to estimate toxicity profiles of small molecules

    High-intensity activity is more strongly associated with metabolic health in children compared to sedentary time: a cross-sectional study of the I.Family cohort

    Get PDF
    Background: Physical activity (PA) during childhood is important for preventing future metabolic syndrome (MetS). To examine the relationship between PA and MetS in more detail, accurate measures of PA are needed. Previous studies have only utilized a small part of the information available from accelerometer measured PA. This study investigated the association between measured PA and MetS in children with a new method for data processing and analyses that enable more detailed interpretation of PA intensity level. Methods: The association between PA pattern and risk factors related to MetS was investigated in a cross- sectional sample of children (n = 2592, mean age 10.9 years, 49.4% male) participating in the European multicenter I. Family study. The risk factors examined include body mass index, blood pressure, high-density lipoprotein cholesterol, insulin resistance and a combined risk factor score (MetS score). PA was measured by triaxial accelerometers and raw data was processed using the 10 Hz frequency extended method (FEM). The PA output was divided into an intensity spectrum and the association with MetS risk factors was analyzed by partial least squares regression. Results: PA patterns differed between the European countries investigated, with Swedish children being most active and Italian children least active. Moderate intensity physical activity was associated with lower insulin resistance (R2 = 2.8%), while vigorous intensity physical activity was associated with lower body mass index (R2 = 3.6%), MetS score (R2 = 3.1%) and higher high-density lipoprotein cholesterol (R2 = 2.3%). PA of all intensities was associated with lower systolic- and diastolic blood pressure, although the associations were weaker than for the other risk factors (R2 = 1.5% and R2 = 1.4%). However, the multivariate analysis implies that the entire PA pattern must be considered. The main difference in PA was observed between normal weight and overweight children. Conclusions: The present study suggests a greater importance of more PA corresponding to an intensity of at least brisk walking with inclusion of high-intense exercise, rather than a limited time spent sedentary, in the association to metabolic health in children. The methods of data processing and statistical analysis enabled accurate analysis and interpretation of the health benefits of high intensity PA that have not been shown previously. © 2021, The Author(s)

    The Continuous Motion Technique for a New Generation of Scanning Systems

    Get PDF
    In the present paper we report the development of the Continuous Motion scanning technique and its implementation for a new generation of scanning systems. The same hardware setup has demonstrated a significant boost in the scanning speed, reaching 190 cm2/h. The implementation of the Continuous Motion technique in the LASSO framework, as well as a number of new corrections introduced are described in details. The performance of the system, the results of an efficiency measurement and potential applications of the technique are discussed
    • 

    corecore