478 research outputs found
miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance
The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation
N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy.
Abstract NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cellâsurface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment
p53FamTaG: a database resource of human p53, p63 and p73 direct target genes combining in silico prediction and microarray data
<p>Abstract</p> <p>Background</p> <p>The p53 gene family consists of the three genes p53, p63 and p73, which have polyhedral non-overlapping functions in pivotal cellular processes such as DNA synthesis and repair, growth arrest, apoptosis, genome stability, angiogenesis, development and differentiation. These genes encode sequence-specific nuclear transcription factors that recognise the same responsive element (RE) in their target genes. Their inactivation or aberrant expression may determine tumour progression or developmental disease. The discovery of several protein isoforms with antagonistic roles, which are produced by the expression of different promoters and alternative splicing, widened the complexity of the scenario of the transcriptional network of the p53 family members. Therefore, the identification of the genes transactivated by p53 family members is crucial to understand the specific role for each gene in cell cycle regulation. We have combined a genome-wide computational search of p53 family REs and microarray analysis to identify new direct target genes. The huge amount of biological data produced has generated a critical need for bioinformatic tools able to manage and integrate such data and facilitate their retrieval and analysis.</p> <p>Description</p> <p>We have developed the p53FamTaG database (p53 FAMily TArget Genes), a modular relational database, which contains p53 family direct target genes selected in the human genome searching for the presence of the REs and the expression profile of these target genes obtained by microarray experiments. p53FamTaG database also contains annotations of publicly available databases and links to other experimental data.</p> <p>The genome-wide computational search of the REs was performed using PatSearch, a pattern-matching program implemented in the DNAfan tool. These data were integrated with the microarray results we produced from the overexpression of different isoforms of p53, p63 and p73 stably transfected in isogenic cell lines, allowing the comparative study of the transcriptional activity of all the proteins in the same cellular background.</p> <p>p53FamTaG database is available free at <url>http://www2.ba.itb.cnr.it/p53FamTaG/</url></p> <p>Conclusion</p> <p>p53FamTaG represents a unique integrated resource of human direct p53 family target genes that is extensively annotated and provides the users with an efficient query/retrieval system which displays the results of our microarray experiments and allows the export of RE sequences. The database was developed for supporting and integrating high-throughput <it>in silico</it> and experimental analyses and represents an important reference source of knowledge for research groups involved in the field of oncogenesis, apoptosis and cell cycle regulation.</p
p63 isoforms regulate metabolism of cancer stem cells
p63 is an important regulator of epithelial
development expressed in different variants containing (TA)
or lacking (\u394N) the N-terminal transactivation domain. The
different isoforms regulate stem-cell renewal and differentiation
as well as cell senescence. Several studies indicate
that p63 isoforms also play a role in cancer development;
however, very little is known about the role played by p63 in
regulating the cancer stem phenotype. Here we investigate the
cellular signals regulated by TAp63 and \u394Np63 in a model of
epithelial cancer stem cells. To this end, we used colon cancer
stem cells, overexpressing either TAp63 or \u394Np63 isoforms,
to carry out a proteomic study by chemical-labeling approach
coupled to network analysis. Our results indicate that p63 is
implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at
both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than \u394Np63
cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry
proteomics data of the study have been deposited to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768
E7 proteins from oncogenic human papillomavirus types transactivate p73: role in cervical intraepithelial neoplasia
In common with other E2F1 responsive genes such as p14ARF and B-myb, the promoter of p73 is shown to be positively regulated in cell lines and primary human keratinocytes by E7 proteins from oncogenic human papillomavirus (HPV) types 16, 18, 31 and 33, but not HPV 6. Mutational analysis revealed that transactivation of the p73 promoter by HPV 16E7 requires association with pRb. Expression of p73 in normal cervical epithelium is confined to the basal and supra-basal layers. In contrast, expression in neoplastic lesions is detected throughout the epithelium and increases with grade of neoplasia, being maximal in squamous cell cancers (SCC). Deregulation of expression of the N-terminal splice variant p73Î2 was observed in a significant proportion of cancers, but not in normal epithelium. The frequent over-expression of p73Î2, which has recognized transdominant properties, in malignant and pre-malignant lesions suggests a role in the oncogenic process in cervical epithelium
XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments
Limestone basements holding bronzes or other copper alloys artefacts such as sculptures, decorations and dedicatory inscriptions are frequently met both in modern and ancient monuments. In outdoor conditions, such a combination implies the corrosion products of the copper based alloy, directly exposed to rainwater, will be drained off and migrate through the porous surfaces, forming stains of different colours and intensities, finally causing the limestone structures to deteriorate
School-based socio-emotional learning programs to prevent depression, anxiety and suicide among adolescents: a global cost-effectiveness analysis
Abstract
Aims
Preventing the occurrence of depression/anxiety and suicide during adolescence can lead to substantive health gains over the course of an individual personâs life. This study set out to identify the expected population-level costs and health impacts of implementing universal and indicated school-based socio-emotional learning (SEL) programs in different country contexts.
Methods
A Markov model was developed to examine the effectiveness of delivering universal and indicated school-based SEL programs to prevent the onset of depression/anxiety and suicide deaths among adolescents. Intervention health impacts were measured in healthy life years gained (HLYGs) over a 100-year time horizon. Country-specific intervention costs were calculated and denominated in 2017 international dollars (2017 I per HLYG. Analyses were conducted on a group of 20 countries from different regions and income levels, with final results aggregated and presented by country income group â that is, low and lower middle income countries (LLMICs) and upper middle and high-income countries (UMHICs). Uncertainty and sensitivity analyses were conducted to test model assumptions.
Results
Implementation costs ranged from an annual per capita investment of I0.16 in UMHICs for the universal SEL program and I0.09 in UMHICs for the indicated SEL program. The universal SEL program generated 100 HLYGs per 1 million population compared to 5 for the indicated SEL program in LLMICs. The cost per HLYG was I2,006 in UMHICs for the universal SEL program and I18,473 in UMHICs for the indicated SEL program. Cost-effectiveness findings were highly sensitive to variations around input parameter values involving the intervention effect sizes and the disability weight used to estimate HLYGs.
Conclusions
The results of this analysis suggest that universal and indicated SEL programs require a low level of investment (in the range of I0.20 per head of population) but that universal SEL programs produce significantly greater health benefits at a population level and therefore better value for money (e.g., less than I$1,000 per HLYG in LLMICs). Despite producing fewer population-level health benefits, the implementation of indicated SEL programs may be justified as a means of reducing population inequalities that affect high-risk populations who would benefit from a more tailored intervention approach
- âŠ