29 research outputs found

    ZnO/ionic liquid catalyzed biodiesel production from renewable and waste lipids as feedstocks

    Get PDF
    A new protocol for biodiesel production is proposed, based on a binary ZnO/TBAI (TBAI = tetrabutylammonium iodide) catalytic system. Zinc oxide acts as a heterogeneous, bifunctional Lewis acid/base catalyst, while TBAI plays the role of phase transfer agent. Being composed by the bulk form powders, the whole catalyst system proved to be easy to use, without requiring nano-structuration or tedious and costly preparation or pre-activation procedures. In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to common vegetable oils (e.g., soybean, jatropha, linseed, etc.) and animal fats (lard and fish oil), but also to waste lipids such as cooking oils (WCOs), highly acidic lipids from oil industry processing, and lipid fractions of municipal sewage sludge. Reusability of the catalyst system together with kinetic (Ea) and thermodynamic parameters of activation (∆G‡ and ∆H‡) are also studied for transesterification reaction

    Green procedure for one-pot synthesis of azelaic acid derivatives using metal catalysis

    Get PDF
    Background & Objective: A green one-pot synthesis of oleic acid (1) derivatives is promoted by Rare Earth Metal (REM) triflates and commercial Molybdenum dioxo dichloride (MoCl 2 O 2 ) in the presence hydrogen peroxide as a green oxidant. Results: The protocol permits to govern the oxidation selectivity by simply choosing the proper combination of Mo and Sc catalysts. Conclusion: Methyl oleate epoxide 2a and azelaic acid 6 thus obtained are valuable industrial intermediates for synthesizing bio-compostable plastics, plasticizers of PVC, lubricating oils, cosmetics and pharmaceuticals (bactericides, anti-inflammatories, etc.)

    Seismic retrofit of a steel-reinforced concrete hospital building using continuous energy-dissipative steel columns

    No full text
    Seismic retrofit of an existing steel-reinforced concrete hospital building that features innovative use of a continuous energy-dissipative steel column (CEDC) system is presented in this paper. The special system has been adopted to provide an efficient solution taking into account the difficulties of applying traditional intervention techniques to minimize the impact on architectural functionality and avoid the loss of building function and evacuation during the retrofit implementation. The lateral stiffness and strength of the CEDC system were defined based on the geometric and mechanical properties of the steel strip dampers. The hysteretic behavior under cyclic loadings was defined using a simplified numerical model. Its effectiveness was validated by comparing the results of full-scale experimental data available from the literature. All the main design considerations of the retrofitting plan are described in detail. The effectiveness of the proposed retrofitting system was demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. The analysis results show that the CEDC system is effective in controlling the deformation pattern and significantly reducing damage to the existing structure during major earthquakes
    corecore