27 research outputs found

    Optimized Manufacture of Lyophilized Dermal Fibroblasts for Next-Generation Off-the-Shelf Progenitor Biological Bandages in Topical Post-Burn Regenerative Medicine.

    Get PDF
    Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential for effective repair stimulation of wounded tissues. Major technical bottlenecks in cell therapy development comprise sustainability, stability, and logistics of biological material sources. Herein, we report stringently optimized and up-scaled processing (i.e., cell biobanking and stabilization by lyophilization) of dermal FPCs, with the objective of addressing potential cell source sustainability and stability issues with regard to active substance manufacturing in cutaneous regenerative medicine. Firstly, multi-tiered FPC banking was optimized in terms of overall quality and efficiency by benchmarking key reagents (e.g., medium supplement source, dissociation reagent), consumables (e.g., culture vessels), and technical specifications. Therein, fetal bovine serum batch identity and culture vessel surface were confirmed, among other parameters, to largely impact harvest cell yields. Secondly, FPC stabilization by lyophilization was undertaken and shown to maintain critical functions for devitalized cells in vitro, potentially enabling high logistical gains. Overall, this study provides the technical basis for the elaboration of next-generation off-the-shelf topical regenerative medicine therapeutic products for wound healing and post-burn care

    Bio-Enhanced Neoligaments Graft Bearing FE002 Primary Progenitor Tenocytes: Allogeneic Tissue Engineering & Surgical Proofs-of-Concept for Hand Ligament Regenerative Medicine.

    Get PDF
    Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 10 <sup>5</sup> cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial

    Burn Center Organization and Cellular Therapy Integration: Managing Risks and Costs.

    Get PDF
    The complex management of severe burn victims requires an integrative collaboration of multidisciplinary specialists in order to ensure quality and excellence in healthcare. This multidisciplinary care has quickly led to the integration of cell therapies in clinical care of burn patients. Specific advances in cellular therapy together with medical care have allowed for rapid treatment, shorter residence in hospitals and intensive care units, shorter durations of mechanical ventilation, lower complications and surgery interventions, and decreasing mortality rates. However, naturally fluctuating patient admission rates increase pressure toward optimized resource utilization. Besides, European translational developments of cellular therapies currently face potentially jeopardizing challenges on the policy front. The aim of the present work is to provide key considerations in burn care with focus on architectural and organizational aspects of burn centers, management of cellular therapy products, and guidelines in evolving restrictive regulations relative to standardized cell therapies. Thus, based on our experience, we present herein integrated management of risks and costs for preserving and optimizing clinical care and cellular therapies for patients in dire need

    Polyelectrolyte nanocomplexes based on chitosan derivatives for wound healing application.

    No full text
    Wound healing, when compromised, may be guided by biological cues such as Arg-Gly-Asp (RGD), a peptide known to induce cell adhesion and migration, eventually combined with adapted nanocarriers. Three different formulations were prepared and investigated in vitro for topical application. All formulations were based on carboxylated and trimethylated chitosan (CMTMC) displaying RGD. The polyelectrolyte nanocomplexes were prepared by mixing two oppositely charged polymers of CMTMC and chondroitin sulfate at different polymer ratios and subsequently characterized by dynamic light scattering and scanning electron microscopy. Hydrogels and foams with a high concentration of RGD-functionalized chitosan (3%) and hyaluronic acid (1.5%) that formed gel-embedded nanocomplexes were developed. In vitro assays showed absence of toxicity, ability to promote proliferation over 7 days and promotion of migration of human dermal fibroblasts treated with any of our formulations. These formulations were shown to be suitable for easy topical application and have the potential to accelerate wound healing

    3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage.

    No full text
    Achieving regeneration of articular cartilage is challenging due to the low healing capacity of the tissue. Appropriate selection of cell source, hydrogel, and scaffold materials are critical to obtain good integration and long-term stability of implants in native tissues. Specifically, biomechanical stability and in vivo integration can be improved if the rate of degradation of the scaffold material matches the stiffening of the sample by extracellular matrix secretion of the encapsulated cells. To this end, a novel 3D-printed lactide copolymer is presented as a reinforcement scaffold for an enzymatically crosslinked hyaluronic acid hydrogel. In this system, the biodegradable properties of the reinforced scaffold are matched to the matrix deposition of articular chondrocytes embedded in the hydrogel. The lactide reinforcement provides stability to the soft hydrogel in the early stages, allowing the composite to be directly implanted in vivo with no need for a preculture period. Compared to pure cellular hydrogels, maturation and matrix secretion remain unaffected by the reinforced scaffold. Furthermore, excellent biocompatibility and production of glycosaminoglycans and collagens are observed at all timepoints. Finally, in vivo subcutaneous implantation in nude mice shows cartilage-like tissue maturation, indicating the possibility for the use of these composite materials in one-step surgical procedures

    Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms.

    No full text
    Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms

    Cellular Derivatives and Efficacy in Wound and Scar Management

    No full text
    Biologicals have been used for decades in biopharmaceutical topical preparations. Because cellular therapies are rou-tinely used in the clinic they have gained significant attention. Different derivatives are possible from different cell and tissue sources, making the selection of cell types and establishment of consistent cell banks crucial steps in the initial whole-cell bioprocessing. Various cell and tissue types have been used in treatment of skin wounds including autolo-gous and allogenic skin cells, platelets, placenta and amniotic extracts from either human or animal sources. Experience with progenitor cells show that they may provide an interesting cell choice due to facility of out-scaling and known properties for wound healing without scar. Using defined animal cell lines to develop cell-free derivatives may provide initial starting material for pharmaceutical formulations that help in overall stability. Cell lines derived from ovine tis-sue (skin, muscle, connective tissue) can be developed in short periods of time and consistency of these cell lines was monitored by cellular life-span, protein concentrations, stability and activity. Each cell line had long culture periods up to 37 - 41 passages and protein measures for each cell line at passages 2 - 15 had only 1.4-fold maximal difference. Growth stimulation activity towards two target skin cell lines (GM01717 and CRL-1221; 40 year old human males) at concentrations ranging up to 6 μg/ml showed 2-3-fold (single extracts) and 3-7-fold (co-cultured extracts) increase. Proteins from co-culture remained stable up to 1 year in pharmaceutical preparations shown by separation on SDS- PAGE gels. Pharmaceutical cell-free preparations were used for veterinary and human wounds and burns. Cell lines and cell-free extracts can show remarkable consistency and stability for preparation of biopharmaceutical creams, moreover when cells are co-cultured, and have positive effects for tissue repair

    Comprehensive Evaluation of Injectability Attributes in OxiFree™ Dermal Fillers: MaiLi<sup>®</sup> Product Variants and Clinical Case Reports.

    No full text
    Dermal filler injectability is a critical factor for commercial product adoption by medical aesthetic professionals and for successful clinical administration. We have previously reported (in vitro and ex vivo) cross-linked hyaluronic acid (HA)-based dermal filler benchmarking in terms of manual and automated injectability requirements. To further enhance the function-oriented product characterization workflows and the clinical relevance of dermal filler injectability assessments, the aim of this study was to perform in vivo evaluations. Therefore, several variants of the MaiLi &lt;sup&gt;®&lt;/sup&gt; product range (OxiFree™ technology) were characterized in vitro and in vivo in terms of injectability attributes, with a focus on hydrogel system homogeneity and ease of injection. Firstly, standardized in vitro assays were performed in SimSkin &lt;sup&gt;®&lt;/sup&gt; cutaneous equivalents, with variations of the clinical injector, injection site, and injection technique. Then, automated injections in SimSkin &lt;sup&gt;®&lt;/sup&gt; cutaneous equivalents were comparatively performed in a texture analysis setup to obtain fine-granulometry injection force profile results. Finally, five female participants were recruited for the in vivo arm of the study (case reports), with variations of the clinical injector, injection site, and injection technique. Generally, the obtained quantitative force values and injection force profiles were critically appraised from a translational viewpoint, based on discussions around the OxiFree™ manufacturing technology and on in-use specialized clinician feedback. Overall, the present study outlined a notable level of homogeneity across the MaiLi &lt;sup&gt;®&lt;/sup&gt; product range in terms of injectability attributes, as well as consistently high ease of administration by medical aesthetic clinicians

    GMP Tiered Cell Banking of Non-enzymatically Isolated Dermal Progenitor Fibroblasts for Allogenic Regenerative Medicine.

    No full text
    Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications
    corecore