381 research outputs found

    Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. IV. Reduced Inner Working Angle and Increased Robustness to Low-Order Aberrations

    Full text link
    The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a prolate apodization, the current implementations offer raw contrasts down to 10−710^{-7} at 0.2 arcsec from a star over a wide bandpass (20\%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We here propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in broadband light. We explore the parameter space by considering different aperture geometries, contrast levels, dark-zone sizes, bandpasses, and focal plane mask sizes. We present an application of these solutions to the case of Gemini/GPI with a design delivering a 10−810^{-8} raw contrast at 0.19 arcsec and offering a significantly reduced sensitivity to low-order aberrations compared to the current implementation. Optimal solutions have also been found to reach 10−1010^{-10} contrast in broadband light regardless of the telescope aperture shape (in particular the central obstruction size), with effective IWA in the 2−3.5λ/D2-3.5\lambda/D range, therefore making the APLC a suitable option for the future exoplanet direct imagers on the ground or in space.Comment: 14 pages, 10 figures, accepted in Ap

    Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph

    Get PDF
    With a clear circular aperture, the vortex coronagraph perfectly cancels an on-axis point source and offers a 0.9 or 1.75 lambda/D inner working angle for topological charge 2 or 4, respectively. Current and near-future large telescopes are on-axis, however, and the diffraction effects of the central obscuration, and the secondary supports are strong enough to prevent the detection of companions 1e-3 - 1e-5 as bright as, or fainter than, their host star. Recent advances show that a ring apodizer can restore the performance of this coronagraph by compensating for the diffraction effects of a circular central obscuration in a 1D modeling of the pupil. We extend this work and optimize apodizers for arbitrary apertures in 2D in order to tackle the diffraction effects of the spiders and other noncircular artefacts in the pupil. We use a numerical optimization scheme to compute hybrid coronagraph designs that combine the advantages of the vortex coronagraph (small in IWA) and of shaped pupils coronagraphs (robustness to central obscuration and pupil asymmetric structures). We maximize the apodizer transmission, while constraints are set on the extremum values of the electric field that is computed in chosen regions of the Lyot plane through closed form expressions. Optimal apodizers are computed for topological charges 2 and 4 vortex coronagraphs and for telescope apertures with 10-30% central obscurations and 0-1% thick spiders. We characterize the impacts of the obscuration ratio and the thickness of the spiders on the throughput and the IWA for the two topological charges.Comment: 23 pages, 12 figures, 2 table

    Apodized vortex coronagraph designs for segmented aperture telescopes

    Get PDF
    Current state-of-the-art high contrast imaging instruments take advantage of a number of elegant coronagraph designs to suppress starlight and image nearby faint objects, such as exoplanets and circumstellar disks. The ideal performance and complexity of the optical systems depends strongly on the shape of the telescope aperture. Unfortunately, large primary mirrors tend to be segmented and have various obstructions, which limit the performance of most conventional coronagraph designs. We present a new family of vortex coronagraphs with numerically-optimized gray-scale apodizers that provide the sensitivity needed to directly image faint exoplanets with large, segmented aperture telescopes, including the Thirty Meter Telescope (TMT) as well as potential next-generation space telescopes.Comment: To appear in SPIE proceedings vol. 991

    Ring-apodized vortex coronagraphs for obscured telescopes. I. Transmissive ring apodizers

    Get PDF
    The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered on various 8-meter class ground-based telescopes. On these observing platforms, the current level of performance is not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent background (e.g. thermal emission of the sky) or the light diffracted by the imprint of the secondary mirror and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central obscuration) when very high contrast is needed (e.g. direct imaging of older exoplanets with extremely large telescopes or space- based coronagraphs), a simple VC, as most coronagraphs, can not deliver its nominal performance because of the contamination due to the diffraction from the obscured part of the pupil. Here we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor designed to exploit the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central obscuration, and for any (even) topological charge of the vortex. More importantly the RAVC maintains the IWA and conserves a fairly high throughput, which are signature properties of the VC.Comment: 10 pages, 6 figure
    • …
    corecore